Homogeneisation et plasticite de plaques minces

Authors

  • Stephane Bourgeois Ecole Superieure de Mecanique de Marseille & LAboratoire de Mecanique et d'Acoustique JMT, Technopole de Chateau-Gombert F-13451 Marseille cedex 20
  • Olivier Debordes Ecole Superieure de Mecanique de Marseille & LAboratoire de Mecanique et d'Acoustique JMT, Technopole de Chateau-Gombert F-13451 Marseille cedex 20
  • Pascal Paton Sollac Fos, CRPC, F-13776 Fos-sur-Mer cedex

Keywords:

homogenization, periodic plates, plasticity, limit loads and criteria, numerical modelling, finite elements

Abstract

This work is an illustration of tire homogenization of metallic periodic plates in tire plastic range. The determination of the macroscopic yield surface is reduced to threedimensional problems, set on a basic cell. The macroscopic limit loads (m embrane and bending efforts) are computed by the finite element method. When the plate is considered orthotropic and symmetric with respect to the middle surface, a limit loads criterion is proposed with an identification method of its parameters. This approach is validated for an homogeneous isotropic plate and the identification of the criterion for a honeycomb plate gives satisfying results.

 

Downloads

Download data is not yet available.

References

[BOU 97) BOURGEOIS S., Modelisation des panneaux structuraux legers, Th~se de doctorat,

Universite de Ia Mediterranee (Aix-Marseille II), 1997.

[CAl 84] CAILLERIE D., «Thin elastic and periodic plates », Math. Meth. in Appl. Sci. 6,

, p. 159-191.

(DEB 85] D~BORDES 0., LICHT C., MARIGO J.-J., MIALON P., MICHEL J.-C., SUQUET P.,

« Charges limites de milieux fortement heterog~nes "• Rapport de fin de contrat M.I.R.

n 83.5.0780, Note Technique 85-3, Universite de Montpellier.

[DEB 86] D~BORDES 0 ., « Homogenization computations in the elastic or ~lastic range;

applications to unidirectional composites and perforated sheets », 4t Int. Symp.

Innovative Num. Method in Engng, Computational Mechanics Publications, SpringerVerlag,

Atlanta, 1986.

[DEB 89] D~BORDES 0 ., « Homogeneisation periodique "• cours, Universite Laval (Quebec).

[ILY 56] ILYUSHIN A.-A., Plasticite, Eyrolles, Paris, 1956, 375 p.

(MAR 87] MARIOO J.-J., MIALON P., MICHEL J.-C., SUQUET P., « Plasticite et

homogeneisation : un exemple de prevision des charges limites d'une structure heterog~ne

periodique », Journal oftlleorical and applied mechanics, Vol. 6, n° I, 1987, p. 47-75.

[MOU 96] MOUFTAKIR L., Homogeneisation des structures ondulees, Th~se de doctorat,

Universite de Metz, 1996.

[OWE 83] OWEN D.R.J., FIGUEIRAS J.A., « Elasto-plastic analysis of anisotropic plates and

shells by the semi-loaf element "• International journal for numerical methods in

engineering, 1983, Vol. 9, p. 521-539.

[SAN 80] 84.NCHEZ-PALENCIA E., « Non homogeneous media and vibration theory », Lecture

Notes In Physics, n° 127, Springer Verlag, Berlin, 1980.

(SUQ 82] SUQUIIT P., Plasticite et homogeneisation, Th~se de doctoral d'etat, Universite

Pierre et Marie Curie, Paris 6, 1982.

[WEI 84] WElL F., Application de Ia lheorie de l'homogeneisation A !'etude elastique et A Ia

rupture de composites resine-fibre de verre, Th~e D.I., Nantes, 1984.

(ZIE 91] ZIENKIEWICZ O.C., TAYLOR R.L., The Finite Element Method, quatri~me edition,

volume I : Basic Formulation and Linear Problem, volume 2 : Solid and Fluid Mechanics,

Dynamics and Non-linearity, Ed. McGraw-Hill, 1991.

Downloads

Published

1998-08-31

How to Cite

Bourgeois, S. ., Debordes, O. ., & Paton, P. (1998). Homogeneisation et plasticite de plaques minces. European Journal of Computational Mechanics, 7(1-3), 39–54. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3381

Issue

Section

Original Article