Formulation du modèle MiSP coque tridimensionnel dégénéré
Keywords:
finite element, shell, mixed formulation, Reissner-Mindlin, in-plane fiber rotationAbstract
This work deals with a mixed variational approach for the linear analysis of shells. MiSP model (Mixed Shear Projection) is based on the Hellinger-Reissner principle with a particular representation of the transverse shear strains. To improve the membrane behaviour of shells, a 3D representation of the “Fiber Rotation” concept is made and adapted to the formulation of the degenerated MiSP model. Two 4-node shell finite elements are developed: MiSP4-Q4 and MiSP4-FRQ. Several tests usually used to validate shell elements are presented. These show a quite good behaviour of these two elements.
Downloads
References
[AHM 70] AHMAD S., IRONS B.M. and ZIENKIEWICZ O.C., «Analysis of thick and thin shell
structures by curved finite elements», Int. Jou. Num. Meth. Eng., 2, 1970, p. 419-451.
[AYA 93] AYAD R., Eléments finis de plaque et coque en formulation mixte avec projection
en cisaillement, Thèse de doctorat, Université de Technologie de Compiègne, France,
[AYA 95] AYAD R., « Une nouvelle approche variationnelle mixte-hybride pour les coques
avec effet de cisaillement transversal et un nouveau concept de rotation autour de la
normale pour améliorer la membrane », Actes du 2e colloque national en calcul des
structures, 16-19 Mai 1995, Giens, France.
[AYA 98] AYAD R., DHATT G. et BATOZ J.L., “A new hybrid-mixed variational approach for
Reissner-Mindlin plates. The MiSP model”, Int. Jou. Num. Meth. Eng., Vol. 42, 1998,
p. 1 149-1 179.
[BAT 80] BATOZ J.L., BATHE K.J. and HO L.W., “A study of three-node triangular plate
bending elements”, Int. Jou. Num. Meth. Eng., Vol. 15, 1980, p. 1 771-1 812.
[BAT 82a] BATHE K.J., Finite element procedures in engineering analysis, Prentice-Hall,
[BAT 82b] BATOZ J.L. and BEN TAHAR M., “Evaluation of a new thin plate quadrilateral
element”, Int. Jou. Num. Meth. Eng., Vol. 18, N° 11, 1982 ,p. 1 655-1 678.
[BAT 83] BATHE K.J. and DVORKIN E., “Our discrete Kirchhoff and isoparametric shell
elements for non-linear analysis”, Comput. Struct., Vol. 16, N° 1-4, 1983, p. 89-98.
[BAT 86] BATHE K.J and DVORKIN E.N., “A formulation of general shell elements - the use
of mixed interpolation of tensorial components”, Int. Jou. Num. Meth. Eng., 22, 1986,
p. 697-722.
[BAT 91] BATOZ J.L. et TRIKI S., Développement d’un élément fini de poutre vrillée,
Rapport interne, UTC/LG2MS/MNM, octobre 1991.
[BAT 92] BATOZ J.L. et DHATT G., Modélisation des structures par éléments finis, Vol.3:
Coques, Eds Hermès, Paris 1992.
[BOI 91] BOISSE P., DANIEL J.L. and GELIN J.C., “A new class of three node and four node
shell elements for the finite/inelastic strain analysis. Applications in sheet metal
forming”, European Conference on New Advances in Comp. Structural Mech., Giens,
France, 1991, p. 529-537.
[CHA 87] CHATELAIN J., Analyse non linéaire des coques minces isotropes et composites par
éléments finis quadrilatéraux, Thèse de Doctorat, Université de Technologie de
Compiègne, 1987.
[COF 91] COFER W.F. and Will K.M., “A three dimensional shell solid transition element for
general nonlinear analysis”,Comput. Struct., Vol. 38, N°4, 1991, p. 449-462.
[COO 89] COOK R.D., MALKUS D.S and PLESHA M.E., Concepts and applications of finite
element analysis, 3rd Ed., J.Wiley 1989.
[CRI 86] CRISFIELD M., Finite elements and solution procedures for structural analysis, Vol.
: Linear analysis, Pineridge press, 1986.
[DVO 84] DVOINRK E.N. and Bathe K.J., “A continuum mechanics based four node shell
element for general non-linear analysis”, Eng. Comput., Vol. 1, 1984, p. 77-88.
[DVO 91] DVORKIN E.N., “The Ahmad-Irons-Zienkiewicz shell element, the MITC4 shell
element, the MITC8 shell element”, Lectures in Nonlinear Analysis of Shells by Finite
Elements, CISM Course, Udine, Italy, June 1991.
[FEZ 81] FEZANS G., Analyse linéaire et non linéaire géométrique des coques par éléments
finis isoparamétriques tridimensionnels dégénérés, Thèse de Doctorat, ENSAE Toulouse,
[FLU 60] FLUGGE W., Sresses in shells, Springer Verla, 1960.
[GRE 61] GREENE B.E., STROME R. and WEIKEL R.C., “Application of the stiffness method
to the analysis of shell structures”, In Proc. Aviation Conference of ASME, Los Angeles,
CA, March 1961.
[HUG 81] HUGHES T.J. and LIU W.K., “Nonlinear finite element analysis of shells:
Part I: Three dimensional shells”, Com. Meth. App. Mec. Eng., 26, 1981, p. 331-362.
Part II: Two dimensional shells”, Com. Meth. App. Mec. Eng., 27, 1981, p. 167-181.
[HUG 87] HUGHES T., The finite element method - Linear static and dynamic finit element
analysis, Prentice Hall, 1987.
[IRO 76] IRONS B., “The semi-loof shell elements”, In Finite Elements for Thin shells and
Curved Members, Eds. Ashwell et al., J. Wiley, 1976, p. 197-222.
[KAT 93] KATILI I., Formulation et évaluation de deux nouveaux éléments finis pour
l’analyse linéaire des plaques et coques de forme quelconque, Thèse de doctorat, UTC,
France, 1993.
[LAR 90] LARDEUR P., Développement et évaluation de deux nouveaux éléments finis de
plaques et coques composites avec influence du cisaillement transverse, Thèse de
Doctorat, UTC, 1990.
[LIN 69] LINDBERG G.M. , OLSON M.D. and COWPER G.R., “New development in the finite
element analysis of shells”, Q. Bull Div. Mech. Eng. and Nat. Aeronautical
Establishment, National Research council of Canada, Vol. 4, 1969.
[MAC 85] MAC NEAL R. and HARDER R.L., “A proposed standart set of problems to test
finite element accuracy”, Finite Element Analysis Design, Vol. 1, 1985, p. 3-20.
[MAU 73] MAU S.T., PIAN T. H. H. and TONG P., “Vibration analysis of laminated plates
and shells by a hybrid stress element”, AIAA Jou. ,11, 1973, p. 1 450-1 452.
[NAT 90] National Agengy for Finite Element Methods and Standards (NAFEMS), U.K.
“The Standard NAFEMS Benchmarks”. TNSB, Rev. 3, October 1990.
[PAR 91] PARISCH H., “An investigation of a finite rotation four node assumed strain shell
element”, Int. Jou. Num. Meth. Eng., Vol. 31, 1991, p. 127-150.
[POL 92] POL P., Modélisation du comportement élastoplastique de coques minces par
éléments finis, Thèse de Doctorat, Université de Technologie de Compiègne, 1992.
[RAM 86] RAMM E. and MATZENMILLER A., “Large deformation shell analysis based on the
degeneration concept”, In Finite Element Methods for Plate and Shell Structures, Vol. 1,
Hughes, Hinton, Eds, 1986, p. 365-393.
[RAM 91] RAMMERSTOFER F.G., “Composite and sandwich shells”, Lecture in Nonlinear
Analysis of Shells by Finite Elements, CISM Course, Udine, Italy, June 1991.
[SIM 89] SIMO J.C., FOX D.D. and RIFAI M.S., “Geometrically exact stress resultant shell
models: formulation and computational aspects of the nonlinear theory”, In Analytical
and Computational Models of Shells, (Noor, Belytschko and Simo Eds), CED-Vol. 3,
ASME, 1989, p. 161-190.
[SIM 90] SIMO J.C., FOX D.D. and RIFAI M.S., “On stress resultant geometrically exact shell
model - Part III: Computational aspects on the nonlinear theory”, Com. Meth. App. Mec.
Eng, Vol. 79, 1990, p. 21-70.
[SCO 69] SCORDELIS A.C. and LO K.S., “Computer analysis of cylindrical shells”, J. Amer.
Conc. Ins., Vol. 61, 1969, p. 539-561.
[STA 85] STANLEY G., Continuum-based shell elements, Ph.d. thesis, Applied Mechanics
Division. Stan ford University, CA, 1985.
[VLA 87] VLACHOUTSIS S., Eléments finis tridimensionnels dégénérés de coques avec
intégration explicite suivant l’épaisseur, Thèse de Doctorat, ENSAE, Toulouse, 1987.
[VLA 90] VLACHOUTSIS S., “Explicit integration for three dimensional degenerated shell
finite elements”, Int. Jou. Num. Meth. Eng., Vol. 29, 1990, p. 861-880.
[WIL 90] WILT T.E., SALEEB A.F. and ChANG T.Y., “A mixed element for laminated plates
and shells”, Comput. Struct., Vol. 37, 1990, p. 597-611.
[YAN 90] YANG H.T.Y, SAIGAL and LIAW, “Advances of thin shell finite elements and some
applications - version 1”, Comp.Struct., 35, 1990, p. 481-504.
[YOS 74] YOSHIDA Y., “A hybrid stress element for thin shell analysis”, In Proc.
International Conference on Finite Element Method in Engineering, 1974, p. 271-284.,
Univ. of N.S.W., Australia.
[ZIE 77] ZIENKIEWICZ O.C., The finite element method, 3rd Edition, McGraw-Hill, 1977.
[ZIE 91] ZIENKIEWICZ O.C and TAYLOR R., The finite element method, Volume 2: Plates,
shell,fluids and non-linear problems, 4th Ed., Mc Graw-Hill, London 1991.