Application de Ia methode des elements finis aux equations 2-D hyperboliques. Partie I : equation scalaire de convection
Keywords:
convection equation, transport equation, shock waves, finite element method, Lax-Wendroff scheme, fluctuation splittingAbstract
The principal goal of this papers is the development of numerical models to capture shock waves in compressible flows. In this first part we should only resolve the scalar convection equation. An explicit scheme for time discretization and FEM with linear triangular element for the space discretization should be employed. We have investigated two approaches. The first one, called the LWR method, is a centered sheme while the other one is the Fluctuation Splitting method based on an upwinding scheme. Initiallv, the second method was developed in a Finite Volume context, however we have rewriten it in a FE context by suitable choice of weighted functions. These methods are applied to different 2-D scalar convection equation examples.
Downloads
References
[BDRS92] G. Bourgeois, H. Deconninck, P. L. Roe, and R. Struijs. Multidimensional
upwind schemes for scalar advection on tetrahedral meshes. First European
CFD Conference, Brussels, 1992.
[Bou93] M. Boulerhcha. Ecoulements euleriens par elements finis avec mffinement
de maillage; comparaison d 'un schema centre et de schbnas decentres. PhD
thesis, Universite Laval, Quebec, 1993.
[BSDN95] M. Boulerhcha, Y. Secretan, G. Dhatt, and D. N. Nguyen. Application
de Ia methode des elements finis aux equations 2-D hyperboliques: partie
II: Equations d 'euler en flu ide compressible. Revue europeene des elements
finis, 1995. A paraitre.
[Don84a] J. Donea. Recent advances in computational methods for steady and transient
transport problems. Nuclear Engineering and Design, 80:141-162,
[Don84b] J. Donea. A Taylor-Galerkin method for convective transport problems.
International Journal for Numerical Methods in Engineering, 20:101-119,
[DQ92] J. Donea and L. Quartapelle. An introduction to finite element methods
for transient advection problems. Computer Methods in Applied Mechanics
and Engineering, 95:169-203, 1992.
[DSB+ 92] H. Deconninck, R. Struijs, G. Bourgeois, H. Paillere, and P. L. Roe. Multidimensional
upwind methods for unstructured grids. A CARD R-787, 1992.
[DSR90] H. Deconninck, R. Struijs, and P. L. Roe. Fluctuation splitting for multidimensional
convection problems: an alternative to finite volume and finite
element methods. Von [(arm an Institute for Fluid Dynamics, Lecture
Series1990-03, 1990.
[DT84] G. Dhatt and G. Touzot. Une presentation de la methode des elements finis.
Collection Universite de Compiegne. Maloine S.A., 1984.
[HFM86) T. J. R. Hughes, L. P. Franca, and M. Mallet. A new finite element formulation
for computational fluid dynamics: I Symmetric forms of the compressible
Euler and N a vier-Stokes equations and the second law of thermodynamics.
Computer Methods in Applied Mechanics and Engineering, 54:223-234,
(Joh92] C. Johnson. Finite element methods for flow problems. AGARD Report
AR-787, 1992.
(Lax54] P. D. Lax. Weak solutions of nonlinear hyperbolic equations and their
numerical computation. Comm. Pure and Applied Mathematics, 7:159-193,
(LMZ85] R. Li:ihner, K. Morgan, and 0. C. Zienkiewicz. An adaptive finite element
procedure for compressible high speed flows. Computer Methods in Applied
Mechanics and Engineering, 51:441-465, 1985.
(LW60] P. D. Lax and B. Wendroff. Systems of conservation laws. Comm. Pure and
Applied Mathematics, 13:217-237, 1960.
(Mor85] K. W. Morton. Generalized Galerkin methods for hyperbolic problems.
Computer Methods in Applied Mechanics and Engineering, 52:847-871,
(MP80] K. W. Morton and A. K. Parrott. Generalized Galerkin methods for firstorder
hyperbolic equations. Journal of Computational Physics, 36:249-270,
[PPF+88] J. Peraire, J. Peiro, L. Formaggia, I<. Morgan, and 0. C. Zienkiewicz. Finite
element Euler computations in three dimensions. International Journal for
Numerical Methods in Engineering, pages 2135-2159, 1988.
(RBT90] R. Ramakrishnan, K. S. Bey, and E. A. Thornton. Adaptive quadrilateral
and triangular finite element scheme for compressible flows. AIAA Journal,
:51-59, 1990.
[RM67] R. D. Richtmyer and K. W. Morton. Difference methods for initial value
problems. Willey, 1967.
[Roe82] P. L. Roe. Fluctuations and signals, a framework for numerical evolution
problems. Proceedings of Numerical Methods for Fluid Dynamics I, pages
-257, 1982. Ed. K. W. Morton and M. J. Baines, Academic Press,
Loudon.
[Roe86] P. L. Roe. Discrete models for the numerical analysis of time-dependant
multidimensional gas dynamics. Journal of Computational Physics, 63:458-
, 1986.
(Roe87] P. L. Roe. 'optimum' upwind advection on triangular meshes. Cranfield
Inst. of Techn. Report No 8720, 1987.
(SDP+91] R. Struijs, H. Deconninck, P. De Palma, P. L. Roe, and K. G. Powell.
Progress on multidimensional upwind Euler solvers for unstructured grids.
AIAA 91-1550, 1991.
[SDR91] R. Struijs, H. Deconninck, and P. L. Roe. Fluctuation splitting schemes for
the 2D Euler equations. Von /( ar·man Institute for Fluid Dynamics, Lecture
Ser·ies 1991-01, 1991.
(SED94] A. Soulaimani, N-E. Elkhadir Elyamani, and C. Deschenes. Une methode
d 'elements finis pour le calcul des ecoulements compressibles utilisaut les
variables conservatives et Ia methode SUPG. Revue europeene des elements
finis, 3:211-245, 1994.
[Spe8i)
[Str86)
[WC84)
S. P. Spekreijse. M ultigrid solution of monotone second-order discretisations
of hyperbolic conservation laws. Mathematic of computation, 49:135-155,
i.
G. Strang. Introduction to applied mathematics. Wellesley-Cambridge Press,
P. Woodward and P. Colella. The numerical simulation of two-dimensional
fluid flow with strong shocks. Journal of Computational Physics, 54:115-
li3, 1984.