Combined implicit-explicit algorithms for non-linear structural dynamics

Authors

  • Ludovic Noels University of Liège LTAS-Thermomechanics - Bât. B52/3 1 Chemin des Chevreuils B-4000 Liège 1, Belgium
  • Laurent Stainier University of Liège LTAS-Thermomechanics - Bât. B52/3 1 Chemin des Chevreuils B-4000 Liège 1, Belgium
  • Jean-Philippe Ponthot University of Liège LTAS-Thermomechanics - Bât. B52/3 1 Chemin des Chevreuils B-4000 Liège 1, Belgium
  • Jérôme Bonini SNECMA-Moteurs Engineering Division - centre de Villaroche F-77550 Moissy-Cramayel, France

Keywords:

Contact, impact, implicit-explicit, time integration, dynamics, non-linearities

Abstract

To solve fast dynamic problems, an explicit method is the most adapted. But for slower dynamics, an implicit method is more stable. The industrial problems are governed by high frequency (impact, ...) during short time intervals and slower dynamics (spring-back, ...) during other time intervals. The optimal solution is then to have both implicit algorithm and explicit methods readily available in the same code and to be able to switch automatically from one to another. Criteria that decide when to shift from a method to another have been developed here. Implicit balanced restarting conditions that annihilate numerical oscillations resulting for an explicit calculation are also proposed.

Downloads

Download data is not yet available.

References

[ARM 99] ARMERO F., ROMERO I., “Dissipative integration algorithms for nonlinear elastodynamics”,

ECCM99, Proceedings of the European Conference on Computational Mechanics,

Munich, Germany, 1999, CD-ROM.

[ARM 01] ARMERO F., ROMERO I., “On the formulation of high-frequency dissipative timestepping

algorithms for non)linear dynamics. Part I: low-order methods for two model problems

and nonlinear elastodynamics”, Computer Methods in Applied Mechanics and Engineering,

vol. 190, 2001, p. 2603-2649.

[BEL 78] BELYTSCHKO T., MULLEN R., “Stability of explicit-implicit mesh partitions in time

integration”, International Journal of Numerical Methods in Engineering, vol. 12, 1978,

p. 1575-1586.

[BEL 83] BELYTSCHKO T., HUGHES T., Computational methods for transient analysis, North

Holland, 1983.

[BEL 92] BELYTSCHKO T., LU Y., “Stability analysis of elemental explicit-implicit partitions

by Fourier methods”, Computer Methods in Applied Mechanics and Engineering, vol. 95,

, p. 87-96.

[BEN 98] BENSON D. J., “Stable time step estimation for multi-material Eulerian hydrocodes”,

Computer Methods in Applied Mechanics and Engineering, vol. 167, 1998,

p. 191-205.

[CAS 91] CASSANO A., CARDONA A., “A comparaison between three variable-step algorithms

for the integration of the equations of motion in structural dynamics”, Latin American

Research, vol. 21, 1991, p. 187-197.

[CHU 93] CHUNG J., HULBERT J., “A time integration algorithms for structural dynamics

with improved numerical dissipations: the generalized- method”, Journal of Applied

Mechanics, vol. 60, 1993, p. 371-375.

[COM 01] COMBESCURE A., GRAVOUIL A., “A time-space multi-scaled algorithm for transient

structural nonlinear problems”, Mécanique & Industrie, vol. 2, 2001, p. 43-55.

[DAN 98] DANIELS W., “Subcycling first- and second-order generalizations of the trapezoidal

rule”, International Journal of Numerical Methods in Engineering, vol. 42, 1998, p. 1091-

[DUT 98] DUTTA A., RAMAKRISHNAN C., “Accurate computation of design sensitives for

structures under transient dynamic loads using time marching scheme”, International Journal

of Numerical Methods in Engineering, vol. 41, 1998, p. 977-999.

[FIN 95] FINN M., GALBRAITH P., WU L., HALLQUIST J., LUM L., LIN T.-L., “Use of

a coupled explicit-implicit solver for calculating spring-back in automotive body panels”,

Journal of Material Processing Technology, vol. 50, 1995, p. 395-409.

[GEL 95] GELIN J., BOULMANE L., BOISSE P., “Quasi-static implicit and transient explicit

analyses of sheet-metal forming using a CÆ three-nodes shell element”, Journal of Material

Processing Technology, vol. 50, 1995, p. 54-69.

[GER 94] GERADIN M., RIXEN D., Mechanical vibrations (Theory and applications to structural

dynamics), John Wiley and Sons Inc, Paris, 1994.

[GER 97] GERADIN M., Analyse, simulation et conception de systèmes polyarticulés et déployables,

Cours IPSI, Paris, mars 11-13 1997.

[GER 00] GERADIN M., Flexible multibody dynamics (A finite element approach), JohnWiley

and Sons Inc, 2000.

[GON 96] GONZALEZ O., SIMO J., “On the stability of sympletic and energy-momentum

algorithms for non-linear Hamiltonian systems with symmetry”, Computer Methods in

Applied Mechanics and Engineering, vol. 134, 1996, p. 197-222.

[GON 99] GONZALEZ O., “Mechanical systems subject to holonomic constraints:

Differential-algebraic formulations and conservative integration”, Physica D, vol. 132,

, p. 165-174.

[GRA 99] GRAILLET D., PONTHOT J.-P., “Efficient implicit schemes for the treatment of the

contact between deformable bodies: Applications to shock-absorber devices”, International

Journal of Crashworthiness, vol. 4, num. 3, 1999, p. 173-286.

[GRA 01] GRAVOUIL A., COMBESCURE A., “Multi-time-step explicit-implicit method for

non-linear structural dynamics”, International Journal of Numerical Methods in Engineering,

vol. 50, 2001, p. 199-225.

[HOG 96] HOGGE M., PONTHOT J.-P., “Efficient implicit schemes for transient problems

in metal forming simulation”, NUPHYMAT’96, Numerical and physical study of material

forming processes, CEMEF-Ecole nationale supèrieure des mines de Paris Sophia-

Antipolis, France, June 5-7 1996.

[HUG 87] HUGHES T., The finite element method, Prentice Hall, 1987.

[HUL 95] HULBERT G., JANG I., “Automatic time step control algorithms for structural dynamics”,

Computer Methods in Applied Mechanics and Engineering, vol. 126, 1995,

p. 155-178.

[HUL 96] HULBERT G., CHUNG J., “Explicit time integration algorithms for structural dynamics

with optimal numerical dissipation”, Computer Methods in Applied Mechanics and

Engineering, vol. 137, 1996, p. 175-188.

[JUN 98] JUNG D., YANG D., “Step-wise combined implicit-explicit finite-element simulation

of autobody stamping process”, Journal of Material Processing Technology, vol. 83,

, p. 245-260.

[KAN 99] KANE C., REPETTO E., ORTIZ M., MARDSEN J. E., “Finite element analysis of

nonsmooth contact”, Computer Methods in Applied Mechanics and Engineering, vol. 180,

, p. 1-26.

[LIU 84] LIU K., BELYTSCHKO T., ZHANG Y., “Implementation and accuracy of mixedtime

implicit-explicit methods for structural dynamics”, Computers & Structures, vol. 19,

num. 4, 1984, p. 521-530.

[NAR 99] NARKEERAN N., LOVELL M., “Predicting springback in sheet metal forming: an

explicit to implicit sequential solution procedure”, Finite Elements in Analysis and Design,

vol. 33, 1999, p. 29-42.

[NOE 00] NOELS L., “Détermination automatique de la taille du pas de temps pour les schémas

implicites en dynamique non-linéaire”, Travail de fin d’étude, june 2000, Université

de Liège, Liège, in French.

[NOE 01] NOELS L., STAINIER L., PONTHOT J., BONINI J., “Automatic time stepping algorithms

for implicit numerical simulations of blade/casing interactions”, International

Journal of Crashworthiness, vol. 6, num. 3, 2001, p. 351-361.

[NOE 02] NOELS L., STAINIER L., PONTHOT J., “Self-adapting time integration management

in crash-worthiness and sheet metal forming computations”, International Journal of

Vehicle Design, vol. 30, num. 2, 2002, p. 1-48.

[OWE 80] OWEN D., HINTON E., Finite elements in plasticity, Pineridge Press, 1980.

[PLE 85] PLESHA M., BELYTSCHKO T., “A constitutive operator splitting method for nonlinear

transient analysis”, Computers & Structures, vol. 20, num. 4, 1985, p. 767-777.

[PON 94] PONTHOT J.-P., HOGGE M., “On relative merits of implicit schemes for transient

problems in metal forming simulation”, International Conference on Numerical Methods

for Metal Forming in Industry, vol. 2, Baden-Baden, Germany, Sept 1994, p. 128-148.

[PON 95] PONTHOT J.-P., “Traîtement unifié de la mécanique des milieux continus solides

en grandes transformations par la méthode des éléments finis”, PhD thesis, Université de

Liège, 1995, in French.

[RAM 89] RAMIREZ M., BELYTSCHKO T., “An expert system for setting time steps in dynamics

finite elemnt programs”, Engineering with Computers, vol. 5, 1989, p. 205-219.

[ROM 00] ROMERO I., ARMERO F., “High-frequency dissipative time-stepping algorithms

for the dynamics of nonlinear shells”, ECCOMAS 2000, Proceedings of the Congress on

Computational Methods in Applied Sciences and Engineering, Barcelona, Spain, 2000.

[SIM 92] SIMO J., TARNOW N.,WONG K., “Exact energy-momentum conserving algorithms

and sympletic schemes for nonlinear dynamics”, Computer Methods in Applied Mechanics

and Engineering, vol. 100, 1992, p. 63-116.

[SUN 00] SUN J., LEE K., LEE K., “Comparaison of implicit and explicit finite element methods

for dynamic problem”, Journal of Material Processing Technology, vol. 105, 2000,

p. 110-118.

[WU 00] WU Y., SMOLINSKI P., “A multi-time step integration algorithm for structural dynamics

based on the modified trapezoidal rule”, Computer Methods in Applied Mechanics

and Engineering, vol. 187, 2000, p. 641-660.

[YAN 95] YANG D., JUNG D., SONG I., YOO D., LEE J., “Comparative investigation into

implicit, explicit, and iterative implicit/explicit schemes for the simulation of sheet-metal

forming processes”, Journal of Material Processing Technology, vol. 50, 1995, p. 39-53.

Downloads

Published

2002-11-20

How to Cite

Noels, L. ., Stainier, L. ., Ponthot, J.-P., & Bonini, J. . (2002). Combined implicit-explicit algorithms for non-linear structural dynamics. European Journal of Computational Mechanics, 11(5), 565–591. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2551

Issue

Section

Original Article

Most read articles by the same author(s)