Combined implicit-explicit algorithms for non-linear structural dynamics
Keywords:
Contact, impact, implicit-explicit, time integration, dynamics, non-linearitiesAbstract
To solve fast dynamic problems, an explicit method is the most adapted. But for slower dynamics, an implicit method is more stable. The industrial problems are governed by high frequency (impact, ...) during short time intervals and slower dynamics (spring-back, ...) during other time intervals. The optimal solution is then to have both implicit algorithm and explicit methods readily available in the same code and to be able to switch automatically from one to another. Criteria that decide when to shift from a method to another have been developed here. Implicit balanced restarting conditions that annihilate numerical oscillations resulting for an explicit calculation are also proposed.
Downloads
References
[ARM 99] ARMERO F., ROMERO I., “Dissipative integration algorithms for nonlinear elastodynamics”,
ECCM99, Proceedings of the European Conference on Computational Mechanics,
Munich, Germany, 1999, CD-ROM.
[ARM 01] ARMERO F., ROMERO I., “On the formulation of high-frequency dissipative timestepping
algorithms for non)linear dynamics. Part I: low-order methods for two model problems
and nonlinear elastodynamics”, Computer Methods in Applied Mechanics and Engineering,
vol. 190, 2001, p. 2603-2649.
[BEL 78] BELYTSCHKO T., MULLEN R., “Stability of explicit-implicit mesh partitions in time
integration”, International Journal of Numerical Methods in Engineering, vol. 12, 1978,
p. 1575-1586.
[BEL 83] BELYTSCHKO T., HUGHES T., Computational methods for transient analysis, North
Holland, 1983.
[BEL 92] BELYTSCHKO T., LU Y., “Stability analysis of elemental explicit-implicit partitions
by Fourier methods”, Computer Methods in Applied Mechanics and Engineering, vol. 95,
, p. 87-96.
[BEN 98] BENSON D. J., “Stable time step estimation for multi-material Eulerian hydrocodes”,
Computer Methods in Applied Mechanics and Engineering, vol. 167, 1998,
p. 191-205.
[CAS 91] CASSANO A., CARDONA A., “A comparaison between three variable-step algorithms
for the integration of the equations of motion in structural dynamics”, Latin American
Research, vol. 21, 1991, p. 187-197.
[CHU 93] CHUNG J., HULBERT J., “A time integration algorithms for structural dynamics
with improved numerical dissipations: the generalized- method”, Journal of Applied
Mechanics, vol. 60, 1993, p. 371-375.
[COM 01] COMBESCURE A., GRAVOUIL A., “A time-space multi-scaled algorithm for transient
structural nonlinear problems”, Mécanique & Industrie, vol. 2, 2001, p. 43-55.
[DAN 98] DANIELS W., “Subcycling first- and second-order generalizations of the trapezoidal
rule”, International Journal of Numerical Methods in Engineering, vol. 42, 1998, p. 1091-
[DUT 98] DUTTA A., RAMAKRISHNAN C., “Accurate computation of design sensitives for
structures under transient dynamic loads using time marching scheme”, International Journal
of Numerical Methods in Engineering, vol. 41, 1998, p. 977-999.
[FIN 95] FINN M., GALBRAITH P., WU L., HALLQUIST J., LUM L., LIN T.-L., “Use of
a coupled explicit-implicit solver for calculating spring-back in automotive body panels”,
Journal of Material Processing Technology, vol. 50, 1995, p. 395-409.
[GEL 95] GELIN J., BOULMANE L., BOISSE P., “Quasi-static implicit and transient explicit
analyses of sheet-metal forming using a CÆ three-nodes shell element”, Journal of Material
Processing Technology, vol. 50, 1995, p. 54-69.
[GER 94] GERADIN M., RIXEN D., Mechanical vibrations (Theory and applications to structural
dynamics), John Wiley and Sons Inc, Paris, 1994.
[GER 97] GERADIN M., Analyse, simulation et conception de systèmes polyarticulés et déployables,
Cours IPSI, Paris, mars 11-13 1997.
[GER 00] GERADIN M., Flexible multibody dynamics (A finite element approach), JohnWiley
and Sons Inc, 2000.
[GON 96] GONZALEZ O., SIMO J., “On the stability of sympletic and energy-momentum
algorithms for non-linear Hamiltonian systems with symmetry”, Computer Methods in
Applied Mechanics and Engineering, vol. 134, 1996, p. 197-222.
[GON 99] GONZALEZ O., “Mechanical systems subject to holonomic constraints:
Differential-algebraic formulations and conservative integration”, Physica D, vol. 132,
, p. 165-174.
[GRA 99] GRAILLET D., PONTHOT J.-P., “Efficient implicit schemes for the treatment of the
contact between deformable bodies: Applications to shock-absorber devices”, International
Journal of Crashworthiness, vol. 4, num. 3, 1999, p. 173-286.
[GRA 01] GRAVOUIL A., COMBESCURE A., “Multi-time-step explicit-implicit method for
non-linear structural dynamics”, International Journal of Numerical Methods in Engineering,
vol. 50, 2001, p. 199-225.
[HOG 96] HOGGE M., PONTHOT J.-P., “Efficient implicit schemes for transient problems
in metal forming simulation”, NUPHYMAT’96, Numerical and physical study of material
forming processes, CEMEF-Ecole nationale supèrieure des mines de Paris Sophia-
Antipolis, France, June 5-7 1996.
[HUG 87] HUGHES T., The finite element method, Prentice Hall, 1987.
[HUL 95] HULBERT G., JANG I., “Automatic time step control algorithms for structural dynamics”,
Computer Methods in Applied Mechanics and Engineering, vol. 126, 1995,
p. 155-178.
[HUL 96] HULBERT G., CHUNG J., “Explicit time integration algorithms for structural dynamics
with optimal numerical dissipation”, Computer Methods in Applied Mechanics and
Engineering, vol. 137, 1996, p. 175-188.
[JUN 98] JUNG D., YANG D., “Step-wise combined implicit-explicit finite-element simulation
of autobody stamping process”, Journal of Material Processing Technology, vol. 83,
, p. 245-260.
[KAN 99] KANE C., REPETTO E., ORTIZ M., MARDSEN J. E., “Finite element analysis of
nonsmooth contact”, Computer Methods in Applied Mechanics and Engineering, vol. 180,
, p. 1-26.
[LIU 84] LIU K., BELYTSCHKO T., ZHANG Y., “Implementation and accuracy of mixedtime
implicit-explicit methods for structural dynamics”, Computers & Structures, vol. 19,
num. 4, 1984, p. 521-530.
[NAR 99] NARKEERAN N., LOVELL M., “Predicting springback in sheet metal forming: an
explicit to implicit sequential solution procedure”, Finite Elements in Analysis and Design,
vol. 33, 1999, p. 29-42.
[NOE 00] NOELS L., “Détermination automatique de la taille du pas de temps pour les schémas
implicites en dynamique non-linéaire”, Travail de fin d’étude, june 2000, Université
de Liège, Liège, in French.
[NOE 01] NOELS L., STAINIER L., PONTHOT J., BONINI J., “Automatic time stepping algorithms
for implicit numerical simulations of blade/casing interactions”, International
Journal of Crashworthiness, vol. 6, num. 3, 2001, p. 351-361.
[NOE 02] NOELS L., STAINIER L., PONTHOT J., “Self-adapting time integration management
in crash-worthiness and sheet metal forming computations”, International Journal of
Vehicle Design, vol. 30, num. 2, 2002, p. 1-48.
[OWE 80] OWEN D., HINTON E., Finite elements in plasticity, Pineridge Press, 1980.
[PLE 85] PLESHA M., BELYTSCHKO T., “A constitutive operator splitting method for nonlinear
transient analysis”, Computers & Structures, vol. 20, num. 4, 1985, p. 767-777.
[PON 94] PONTHOT J.-P., HOGGE M., “On relative merits of implicit schemes for transient
problems in metal forming simulation”, International Conference on Numerical Methods
for Metal Forming in Industry, vol. 2, Baden-Baden, Germany, Sept 1994, p. 128-148.
[PON 95] PONTHOT J.-P., “Traîtement unifié de la mécanique des milieux continus solides
en grandes transformations par la méthode des éléments finis”, PhD thesis, Université de
Liège, 1995, in French.
[RAM 89] RAMIREZ M., BELYTSCHKO T., “An expert system for setting time steps in dynamics
finite elemnt programs”, Engineering with Computers, vol. 5, 1989, p. 205-219.
[ROM 00] ROMERO I., ARMERO F., “High-frequency dissipative time-stepping algorithms
for the dynamics of nonlinear shells”, ECCOMAS 2000, Proceedings of the Congress on
Computational Methods in Applied Sciences and Engineering, Barcelona, Spain, 2000.
[SIM 92] SIMO J., TARNOW N.,WONG K., “Exact energy-momentum conserving algorithms
and sympletic schemes for nonlinear dynamics”, Computer Methods in Applied Mechanics
and Engineering, vol. 100, 1992, p. 63-116.
[SUN 00] SUN J., LEE K., LEE K., “Comparaison of implicit and explicit finite element methods
for dynamic problem”, Journal of Material Processing Technology, vol. 105, 2000,
p. 110-118.
[WU 00] WU Y., SMOLINSKI P., “A multi-time step integration algorithm for structural dynamics
based on the modified trapezoidal rule”, Computer Methods in Applied Mechanics
and Engineering, vol. 187, 2000, p. 641-660.
[YAN 95] YANG D., JUNG D., SONG I., YOO D., LEE J., “Comparative investigation into
implicit, explicit, and iterative implicit/explicit schemes for the simulation of sheet-metal
forming processes”, Journal of Material Processing Technology, vol. 50, 1995, p. 39-53.