A NonSmooth Contact Dynamics-based multi-domain solver

Code coupling (Xper) and application to fracture

Authors

  • Frederic Perales Institut de Radioprotection et de Sûreté Nucléaire, DPAM, BP3 F-13115 Saint Paul Lez Durance cedex and Laboratoire de Micromécanique et d’Intégrité des Structures IRSN DPAM-CNRS Université de Montpellier 2
  • Frederic Dubois Laboratoire de Mécanique et Génie Civil, CC048, Place E. Bataillon F-34095 Montpellier cedex 5 and Laboratoire de Micromécanique et d’Intégrité des Structures IRSN DPAM-CNRS Université de Montpellier 2
  • Yann Monerie Institut de Radioprotection et de Sûreté Nucléaire, DPAM, BP3 F-13115 Saint Paul Lez Durance cedex and Laboratoire de Micromécanique et d’Intégrité des Structures IRSN DPAM-CNRS Université de Montpellier 2
  • Bruno Piar Institut de Radioprotection et de Sûreté Nucléaire, DPAM, BP3 F-13115 Saint Paul Lez Durance cedex and Laboratoire de Micromécanique et d’Intégrité des Structures IRSN DPAM-CNRS Université de Montpellier 2
  • Laurent Stainier Institut de Recherche en Génie Civil & Mécanique, 1 rue de la Noë, BP 92101, F-44321 Nantes cedex 3

DOI:

https://doi.org/10.13052/EJCM.19.389-417

Keywords:

NonSmooth Contact Dynamics, frictional cohesive zone model, domain decomposition method, periodic media, fracture dynamics, heterogeneous media

Abstract

This paper presents a micromechanical modeling strategy for complex multibody interactions and the associated numerical framework. The strategy rests on a periodic multibody method in the framework of the NonSmooth Contact Dynamics approach of Moreau (1988) extended to classical domain decomposition problems. Many complex interactions can be taken into account: interactions between discrete elements, between discrete or rigid bodies, (quasistatic) contact or impact, friction or adhesion, decohesion (cracking), etc. The associated numerical platform, Xper, is composed of three independent libraries with Object Oriented Programming. The ability of this computational approach is illustrated by two examples of fracture in heterogeneous materials.

Downloads

Download data is not yet available.

References

Alart P., Barboteu M., Renouf M., « Parallel computational strategies for multicontact problems

: applications to cellular and granular media. », International Journal for Multiscale

Computational Engineering, vol. 1, p. 419-430, 2003.

Alart P., Curnier A., « A mixed formulation for frictional contact problems prone to newton

like solution methods », Computer Methods in Applied Mechanics and Engineering, vol.

, p. 353-375, 1991.

Alfano G., Crisfield M., « Finite element interface models for the delamination analysis of

laminated composites : mechanical and computational issues », International Journal for

Numerical Methods in Engineering, vol. 50, p. 1701-1736, 2001.

Azema E., Radjaï F., Peyroux R., Dubois F., Saussine G., « Vibrational dynamics of confined

granular materials », Physical Review E, vol. 74, n° 3, p. 031302, 2006.

Balourdet M., Bernaudat C., Basini V., Hourdequin N., « The PROMETRA program : Assessment

of mechanical properties of Zircaloy-4 fuel properties during a RIA. », Transactions of

the 15th International Conference on Structural Mechanics in Reactor Technology, Seoul,

Korea, p. II-485-492, August 15-20, 1999.

Camacho G., Ortiz M., « Computational modelling of impact damage in brittle materials »,

International Journal of Solids and Structures, vol. 33, p. 2899-2938, 1996.

Cazalis B., Bernaudat C., Yvon P., Desquines J., Poussard C., Averty X., « The PROMETRA

program : a reliable material database for highly irradiated Zircaloy-4, ZirloTM and M5TM

fuel claddings. », 18th International Conference on Structural Mechanics in Reactor Technology,

Beijing, China, p. 383-393, August 7-12, 2005. SMiRT18 - C02_1.

CECILL, More information on the web site : http ://www.cecill.info/index.en.html, 2005.

Chetouane B., Dubois F., Vinches M., Bohatier C., « NSCD discrete element method for modeling

masonry structures », International Journal for Numerical Methods in Engineering,

vol. 64, p. 65-94, 2005.

De Saxcé G., Feng Z.-Q., « New inequality and functional for contact with friction : the implicit

standard material approach », Mechanics of Structures and Machines, vol. 19, p. 301-325,

Dodds J., Lopez L., « Substructuring in linear and nonlinear analysis », International Journal

of Numerical Methods in Engineering, vol. 15, p. 583-597, 1980.

Dubois F., JeanM., « Une plateforme de développement dédiée à la modélisation des problèmes

d’interaction », in M. Potier-Ferry, M. Bonnet, A. Bignonnet (eds), 6ème colloque national

en calcul de structures, vol. 1, Giens, p. 111-118, 2003.

Dureisseix D., Farhat C., « A numerically scalable domain decomposition method for the solution

of frictionless contact problems », International Journal for Numerical Methods in

Engineering, vol. 50, p. 2643-2666, 2001.

Fremond M., « Adhérence des solides. », Journal de Mécanique Théorique et Appliquée, vol.

, n° 3, p. 383-407, 1987.

Glowinski R., Le Tallec P., « Augmented Lagrangian interpretation of the non-overlapping

Schartz alternating method », Domain Decomposition method SIAM, Philadelphia, USA,

p. 224-231, 1990.

Gravouil A., Combescure A., « A multi-time-step explicit-implicit method for non-linear structural

dynamics », International Journal for Numerical Methods in Engineering, vol. 50,

p. 199-225, 2001.

He M. Y., Hutchinson J. W., « Crack deflection at an interface between dissimilar elastic materials

», International Journal of Solids and Structures, vol. 25, p. 1053-1067, 1989.

Herry B., Valentin L. D., Combescure A., « An approch to the connection between subdomains

with non-matching meshes for transient mechanical analysis », International Journal for

Numerical Methods in Ingineering, vol. 55, p. 973-1003, 2002.

Iceta D., Alart P., Dureisseix D., « A multilevel domain decomposition solver suited to nonsmoooth

mechanical problems », in M. Bercovier, M. Gander, R. Kornhuber, O. Widlund

(eds), Lecture notes in Computational Science and Engineering, vol. 70, Springer Verlag,

p. 113-120, 2009.

Jean M., « The non-smooth contact dynamics method », Computer Methods in Applied Mechanics

and Engineering, vol. 177, p. 235-257, 1999.

Jean M., Acary V., Monerie Y., « Non-smooth contact dynamics approach of cohesive materials

», Phil. Trans. R. Soc. Lond., vol. A359, p. 2497-2518, 2001.

LMGC90, Web site : http ://www.lmgc.univ-montp2.fr/dubois/LMGC90/, 2009.

Magoules F., Roux F., « Lagrangian formulation of domain decomposition methods :A unified

theory », Applied Mathematical Modelling, vol. 30, p. 593-615, 2006.

Martin E., Peters P., Leguillon D., Quenisset J., « Conditions for matrix crack deflection at an

interface in ceramic matrix composites », Materials Science and Engineering, vol. A250,

p. 291-302, 1998.

Martin R. C., « The Liskov Substitution Principle », C++ Report, 1996.

Martin R. C., Agile Software Development. Principles, Patterns and Practices, Alan Apt Series,

Prentice Hall, Pearson Education, Inc. Upper Saddle Reaver, New Jersey 07458., 2003.

Meyer B., Object-Oriented Software Construction, second edn, Prentice Hall PTR, 1997.

Michel J.-C., Suquet P., « An analytical and numerical study of the overall behaviour of metalmarix

composites », Modelling Simulation in Materials Science and Engineering, vol. 2,

p. 637-658, 1994.

Moreau J.-J., « Unilateral contact and dry friction in finite freedom dynamics », in J.-J.Moreau,

P. Panagiotopoulos (eds), Non Smooth Mechanics and Applications, vol. 302 of CISM -

Courses and Lectures, Springer, Vienna, p. 1-82, 1988.

Nineb S., Alart P., Dureisseix D., « Domain decomposition approach for non-smooth discrete

problems, example of a tensegrity structure », Computers and Structures, vol. 85, p. 499-

, 2007.

OrtizM., Stainier L., « The variational formulation of viscoplastic constitutive updates », Computer

methods in applied mechanics and engineering, vol. 171, p. 419-444, 1999.

PELICANS,Web site : https ://gforge.irsn.fr/gf/project/pelicans/, 2009.

Pelissou C., Baccou J., Monerie Y., Perales F., « Determination of the size of the representative

volume element for random quasi-bittle composites », International Journal of Solids and

Structures, 2009. In Press.

Perales F., Bourgeois S., Chrysochoos A., Monerie Y., « Two field multibody method for periodic

homogenization in fracture mechanics of nonlinear heterogeneous materials », Engineering

Fracture Mechanics, vol. 75, p. 3378-3398, 2008.

Perales F.,Monerie Y., Chrysochoos A., « Nonsmooth fracture dynamics of functionally graded

materials », in J. Cirne, R. Dormeval, et al. (eds), 8th International Conference on Mehanical

and Physical Behaviour ofMaterials under Dynamic Loading, vol. 134, EURODYMAT,

Journal de Physique IV, Dijon, France, p. 367-372, sep, 2006.

Raous M., Cangémi L., Cocu M., « A consistent model coupling adhesion, friction and unilateral

contact », Computer Methods in Applied Mechanics and Engineering, vol. 177, n° 3–4,

p. 383-399, 1999.

Raous M., Monerie Y., « Unilateral contact, friction and adhesion : 3D crack in composite

material », in J. Martins, M. Monteiro Marques (eds), 3d Contact Mechanics International

Symposium, Collection Solid Mechanics and its Applications, Kluwer, Peniche (Portugal),

p. 333-346, 17-21 june, 2001.

Raous M., Monerie Y., « Unilateral contact, friction and adhesion : 3D cracks in composite

materials », in J. Martins, M. M. Marques (eds), Collection Solid Mechanics and its Applications,

Contact Mechanics, Kluwer, vol. 302 of CISM - Courses and Lectures, p. 333-346,

Renouf M., Optimisation numérique et calcul parallèle pour l’étude des milieux divisés bi- et

tridimensionnels, PhD thesis, Université Montpellier II, 2004.

RenoufM., Bonamy D., Dubois F., Alart P., « Steady surface flows in rotating drum : Numerical

Simulation », Physics of Fluids, vol. 17, p. 103303, 2005.

Siegmund T., Fleck N. A., Needleman A., « Dynamic crack growth across an interface », International

Journal of Fracture, vol. 85, p. 381-402, 1997.

Stainier L., Dubois F., Peyroux R., « MatLib, une bibliothèque portable de modèles constitutifs

pour la mécanique non-linéaire des solides : concepts et implémentation », in M. Potier-

Ferry, M. Bonnet, A. Bignonnet (eds), 6ème Colloque National en Calcul des Structures,

vol. 3, Giens, p. 25-32, 2003.

Tvergaard V., « Effect of fibre debonding in a whisker-reinforced metal. », Materials Science

and Engineering, vol. A125, p. 203-213, 1990.

Vincent P.-G.,Modélisation micromécanique de la croissance et de la percolation de pores sous

pression dans une matrice céramique à haute température, PhD thesis, Université d’Aix

Marseille 1 - Provence, 2007. http ://tel.archives-ouvertes.fr/tel-00492215/fr/.

Xu G., Bower A. F., Ortiz M., « The influence of crack trapping on the toughness of fiber

reinforced composites. », Journal of the Mechanics and Physics of Solids, vol. 46, n° 10,

p. 1815-1833, 1998.

Xu X.-P., Needleman A., « Numerical simulations of fast crack growth in brittle solids », Journal

of Mechanics and Physics of Solids, vol. 42, n° 9, p. 1397-1434, 1994.

Yamanaka S., Yamada K., Kurosaki K., Uno M., Takeda K., Anada H., Matsuda T., Kobayashi

S., « Thermal properties of zirconium hydride. », Journal of Nuclear Materials, vol. 294,

p. 94-98, 2001.

Yamanaka S., Yoshioka K., Uno M., Katsura M., Anada H., Matsuda T., Kobayashi S., « Thermal

and mechanical properties of zirconium hydride. », Journal of Alloys and Compounds,

vol. 293–295, p. 23-29, 1999.

Yang Q., Stainier L., Ortiz M., « A variational formulation of the coupled thermo-mechanical

boundary-value problem for general dissipative solids », Journal of Mechanics and Physics

of Solids, vol. 54, p. 401-424, 2006.

Zavattieri P. D., Raghuram P. V., Espinosa H. D., « A computational model of ceramic microstructures

subjected to multi-axial dynamic loading. », Journal of the Mechanics and

Physics of Solids, vol. 49, p. 27-68, 2001.

Downloads

Published

2010-08-06

How to Cite

Perales, F., Dubois, F. ., Monerie, Y. ., Piar, B. ., & Stainier, L. . (2010). A NonSmooth Contact Dynamics-based multi-domain solver: Code coupling (Xper) and application to fracture. European Journal of Computational Mechanics, 19(4), 389–417. https://doi.org/10.13052/EJCM.19.389-417

Issue

Section

Original Article