Modèles de plasticité et viscoplasticité pour le chargement cyclique
Keywords:
plasticity/viscoplasticity, cyclic loading, finite elementsAbstract
The classical models ofplasticity and viscoplasticity ofmetals, exhibiting anisotropie behavior under cyclic loading, ought to invariably include kinematic hardening in arder to capture the Bauschinger effect observed experimentally. In this paper we discuss the numerical implementation of one such mode/ of kinematic hardening, known as Armstrong-Frederick or Chaboche nonlinear kinematical hardening. Stress integration algorithm and the consistent tangent modulus ensuring the quadratic convergence rate are presented. Severa/ numerical examples are presented to illustrate the efficiency of our formulation.
Downloads
References
[ARM 66] ARMSTRONG P., FREDERICK C., « A Mathematical representation of the multiaxial
Bauschinger effect *• Rapport de recherche n° RD/B/N731, 1966, Berkeley Nuclear
Laboratories.
[AUR 94] AURUCCHIO F., TAYLOR R., « A generalized elastoplastic plate theory and its
algorithrnic implementation », /nt. J. Numer. Methods Eng., vol. 37, n° 6, 1994, p. 2583-
, John Wiley, Londres.
[BAT 92] BATOZ J ., DHATT G ., Modélisation des structures par la méthode des éléments/mis.
Voll, Edition Hermès, Paris, 1992.
[BEN 87] BENALLAL A.,« On the stability of sorne time-integration schemes in quasi-static
hardening elasto-viscoplasticity », Engrg. Anal., vol. 4, n° 1, 1987, p. 95-99.
[BES 98] BESSON J., LERICHE R., FOERCH R., CAILLETAUD G., « Object-oriented programming
app!ied to the finite element method, part II: Application to material behaviors »,
Revue européenne élém . .finis, vol. 5, n° 4, 1998, p. 567-588, Editions Hermès, Paris.
[CHA 55] CHABOCHE J ., CAILLETAUD G ., « Integration methods for complex plastic constitutive
equations "• Comp. Methods Appt. Mech. Eng., vol. 133, n° 2, 125-155, Elsevier,
Amsterdam.
[CHA 86] CHABOCHE J ., « Time-independent constitutive theories for cyclic plasticity "• /nt.
J. Plasticity, vol. 2, n° 1, 1986, p. 149-188, Elsevier, Amsterdam.
[CHA 94] CHABOCHE J., CAILLETAUD G., « On the calculation of structures in cyclic plasticity
and viscoplasticity », Comput. Struct., vol. 23, n° 1, 1994, p. 23-31, Elsevier,
Amsterdam.
[CHO 78] CHORIN A., HUGHES T., MCCRACKEN M., MARSDEN J., « Product Formulas
and Numerical Algorithms », Commun. Pure Appl. Math., vol. 31, n° 2, 1978, p. 205-
, Elsevier, Amsterdam.
[DHA 84] DHATT G., TOUZOT G., Une présentation de la méthode des éléments finis, Malaine
S.A. Editeur, Paris, 1984.
[DOG 93] DOGHRI I., « Fully implicit integration and consistent tangent modulus in elastoplasticity
»,/nt. J. Numer. Methods Eng., vol. 36, n° 11, 1993, p. 3915-3932, John Wiley,
Londres.
[DRU 88] DRUCKER D., « Conventional and Unconventional Plastic Response and Representation
», Appl. Mech. Rev., vol. 41, 1988, p. 151-167, Elsevier, Amsterdam.
[HAR 93] HARTMANN S., HAUPT P., « Stress Computation and Consistent Tangent Operator
Using Non-Linear Kinematic Hardening Models », /nt. J. Numer. Methods Eng., vol. 36,
, p. 3801-3814, John Wiley, Londres.
[HAR 97] HARTMANN S., LÜHRS G., HAUPT P.,« An Efficient Stress Algorithm with Applications
in Viscoplasticity ans Plasticity "• /nt. J. Numer. Methods Eng., vol. 40, 1997,
p. 991-1013, John Wiley, Londres.
[HIL 50] HILL R., The Mathematical Theory of Plasticity, Oxford University Press, Londres,
[HUG 80] HUGHES T., « Generalization of the Selective Integration Procedure to Anisotropie
and Nonlinear Media "• /nt. J. Numer. Methods Eng., vol. 15, 1980, p. 1413-1418, John
Wiley, Londres.
[IBR 91] IBRAHIMBEGOVIC A., WILSON E., « A Modified Method of Incompatible
Modes », Commun. Numer. Methods Eng., vol. 7, 1991, p. 187-194, John Wiley, Londres.
[IBR 98] IBRAHIMBEGOVIC A., GHARZEDDINE F., CHORFI L., « Classical Plasticity and
Viscoplasticity Models Reformulated: Theoretical Basis and Numerical Implementation »,
/nt. J. Numer. Methods, vol. 42, 1998, p. 1499-1435, John Wiley, Londres.
[IBR 00] IBRAHIMBEGOVIC A., CHORFI L., « Viscoplasticity Mode! at Finite Deformations
with Combined Isotropie and Kinematic Hardening », Comput. Struct., vol. 77, 2000,
p. 509-525, Elsevier, Amsterdam.
[KRI 77] KRIEG R., KRIEG D., « Accuracies of Numerical Solution Methods for the ElasticPerfectly
Plastic Mode! »,ASME J. Press. Vessel Tech., vol. 99, 1977, p. 510-515.
[LUB 72] LUBLINER J ., « On the Thermodynamic Foundations of Non-linear Solid Mechanics
», /nt. J. Non-linear Mech., vol. 7, 1972, p. 237-254.
[MAL 78] MALKUS D., HUGHES T., « Mixed Finite Element Methods-Reduced and Selective
Integration Technics: A Unification of Concepts », Comput. Methods Appl. Mech.
Engrg., vol. 15, n° 1, 1978, p. 63-81, Elsevier, Amserdam.
[MOR 76] MOREAU J., « Application of convex analysis to the treatment of elastoplastic
systems "• Applications of Methods of Functional Analysis to Problems in Mechanics,
Berlin, 1976, Springer-Varlag, p. 56-89.
[NAG 74] NAGTAGAAL J., PARK D., RICE J., « On Numerically Accurate Finite Element
Solutions in Fully Plastic Range », Comput. Methods Appl. Mech. Eng., vol. 4, n° 2,
, p. 153-177, Elsevier, Amsterdam.
[NAG 75] NAGHDI P., TRAPP J ., « The Significance of Formulating Plasticity Theory With
Reference to Loading Surfaces in Strain Space »,/nt. J. Engng. Sei., vol. 13, 1975, p. 785-
, Elsevier, Amsterdam.
[NGU 74] NGUYEN Q., Bur H., « Sur les matériaux élastoplastiques à écrouissage positif ou
négatif "• J. de Mécanique, vol. 13, 1974, p. 321-342.
[NGU 77] NGUYEN Q., « On the Elastic Plastic Initial-Boundary Value Problem and Its Numerical
Integration "• /nt. J. Numer. Methods Eng., vol. Il, 1977, p. 817-832, John Wiley,
Londres.
[PER 68] PERZYNA P.,« Fundamental problems in Viscoplasticity "• Advances Appl. Mech.,
vol. 9, 1968, p. 243-322.
[SAX 97] DE SAXCÉ G., HJIAJ M., « Sur l'intégration numérique de la loi d'ecrouissage
cinématique non linéaire "• 3ème Colloque National en Calcul des Structures, Giens,
, Editions Hermès, Paris, p. 124-128.
[SIM 85] SIMO J., TAYLOR R., « Consistent Tangent Operators for Rate Independent Plasticity
"• Comput. Methods Appl. Mech. Eng., vol. 48, 1985, p. 101-118, Elsevier, Amsterdam.
[TOU 93] TOUZOT G ., DABOUNOU J ., « Intégration Numérique des Lois de Comportement
Elastoplastiques "• Revue Europ. Elemts. Finis, vol. 2, 1993, p. 465-494, Editions Hermès,
Paris.
[WIL 64] WILKINS M., « Calculation of elastic-plastic flow "• Methods of Computational
Physics, vol. 3, 1964, p. 211-272, Academie Press.
[WIL 73] WILSON E., TAYLOR R., DOHERTY W., GHABOUSSI J., « Incompatible Displacement
Models "• Numerical and Computer Methods in Structural Mechanics, Academie
Press, 1973, p. 43-57.
[ZIE 89] ZIENKIEWICZ 0., TAYLOR R., The Finite Element Method: Basic Fonnulation and
Linear Problems, McGraw-Hill, Londres, 1989.