Finite elastic deformations and finite rotations of 3d continuum with independent rotation field
Keywords:
3d continuum, finite rotation, elastic deformation, regularized variational principle, 8-node solid element, incompatible modesAbstract
Several variational principles for finite elastic deformations of a continuum with independent (finite) rotation field are constructed based on the polar decomposition theorem. Their regularized forms are then discussed and reduced to the one which is the most suitable for finite element implementation. A three-dimensional 8-node solid element with 6 degrees of freedom per node (three translational and three rotational) is developed based on the preferred variational formulation and the modified method of incompatible modes. A special care is dedicated to enhancing the computational efficimcy, by considering on one hand an alternative parametrization of the finite rotation field, and on the other hand by using the operator split method in dealing with the incompatible modes. The proposed approach is evaluated on a set of challenging large displacement/large rotation problems in nonlinear elastostatics.
Downloads
References
[ALL84] Allman D.J ., A Compatible Triangular Element Including Vertex
Rotations for Plane Elasticity Problems, Comput. Struct., 19, 1-8, 1984
[ARG82] Argyris J ., An Excursion into Large Rotations, Comput. Methods
Appl. Mech. Eng., 32, 85-155, 1982
[ATL83] Atluri S.N ., Alternate Stress and Conjugate Strain Measures and
Mixed Variational Formulations Involving Rigid Rotations for Computational
Analysis of Finitely Deformed Solids with Application to Plates
and Shells- I Theory, Comput. Struct., 1, 93-116, 1983
[BAB79] B<1.t.he ILl. and S. Bolourchi, Large Displacement Analysis of ThreeDimen~
onal Ueam Structures, Int. J. Numer. Methods Eng., 14, 961-
, 1q79
[BEF85] BEr~-,a,J P.G. and C.A. Felippa, A Triangular Membrane Element
with Rotatioual Degrees of Freedom, Comput. Methods Appl. Mech.,
, 25-60, 1985
[BEN86] Ber&r,u P.G. and M.K. Nygard, Nonlinear Shell Analysis Using Free
Formulation Finite Elements, in Finite Element Method for Nonlinear
Problems, {•·ds. P.G. Bergan et al.), Springer-Verlag, Berlin, 317-338,
[BI065] Biot M.A., Mechanics of Incremental Deformations, John Wiley, London,
[CHM78] Chorin A., T.J .R. Hughes, M.F. McCracken and J .E. Marsden,
Product Formulas and Numerical Algorithms, Commun. Pure Appl.
Math., 31, 205-256, 1978
[DVB84] Dvorkin E.N. and K.J. Bathe, A Continuum Mechanics Based FourNode
~hell Ekment for General Nonlinear Analysis, Eng. Computations,
, 77·R'B, 19tH
[FDV72] Fra.f'ij~ de Veubeke B., A New Variational Principle for Finite Elastic
DisplaceP1enc<,, Int. J. Engng. Sci., 10, 745-763, 1972
[GUR81] Gurcin .1., An Jnirod'Uction to Continuum Afechanics, Academic
Press, N ~"·York, 1981
[HUB89] Hughes T.J .R. and F. I3rezzi, On Drilling Degrees of Freedom, Comput.
Metho1ls Appl. Mech. Eng., 72, 105-121, 1989
[HBM90] Hughes T.J .R., F. Brezzi, A. Masud and I. Ilarari, Finite Elements
with Drilling Degrees of Freedom, in Symposium Numer. Methods Eng.,
(eds. R. Gruber et al.), Sringer-Verlag, 3-18, 1990
[ITW90] lbrahimbegovic A., R.L. Taylor and E.L. Wilson, A Robust Membrane
Quadrilateral Element With Drilling Degrees of Freedom, Int. J.
Numer. Met.hods Eng., 30, 445-457, 1990
[IBW91] Ibrahin1begovic A. and E.L. Wilson, A Modified Method of Incompatible
Modes, Commun. Appl. Numer. Methods, 7, 187-194, 1991
[IFR93] Ibrahimbegovic A., F. Frey, B. Rebora, Une approche unifiee de Ia
modelisation des structures complexes: les elements finis avec degre de
liberte de rotation, Revue europ. elem. finis, 2, 257-286, 1993
[IBR93] lbrahimbegovic A., Mixed Finite Element with Drilling Rotations for
Plane Problems in Elasticity, Comput. Methods Appl. Mech. Eng., 107,
-23R, 1993
[IBF93] Ibr;'thimLcgovic A. and F. Frey, Geometrically Nonlinear Method of
lncompat.ihlc Modes in Application to Finite Elasticity With Independent
Rotation'>, Int J. N umer. Methods Eng., 36, 4185-4200, 1993
[IBR94] lbrahimbegovic A., On Implicit Integration for a General Form of
Rate-lndq)endent Plasticity, Int. J. Eng. Modeling, 7, 21-27, 1994
[IFK95] lbranim!Jegovic A., F. Frey and I. Kozar, Computational Aspects
of Vector-Like Parameterization of Three-Dimensional Finite Rotations,
Int. J. N unwr. Methods Eng., in press, 1995
[JEF86] Jetteur Ph. and F. Frey, A Four Node Marguerre Element for Nonlinear
Shell Analysis, Eng. Comput., 3, 276-282, 1986
[KOI76] Koiter W.T., On the Complementary Energy Theorem in Nonlinear
Elasticity, in Trends in Applications of Pure Mathematics to Mechanics,
(ed. G. Fichera), Pitman Publishing, 207-232, 1976
[MAH83] Marsden J .E. and T.J .R. Hughes, Mathematical Foundations of
Elasticity, Prentice Hall, Englewood Cliffs, NJ, 1983
[RAD94] Radovitzky R.A. and E. Dvorkin, A 3D Element for Non-linear Analysis
of SoliJs, Commun. Numer. Methods Eng., 10, 183-194, 1994
[REI84] Reiss.wr E., Formulation of Variational Theorems in Geometrically
Nonlinear Elasticity, J. ASCE Eng. Mech. Div., 110, 1377-1390, 1984
[SIR90] Simo J .C. and M.S. Rifai, A Class of i·1ixed Assumed Strain Methods
and the :vlethod of Incompatible Modes, Int. J. N umer. Methods Eng.,
, 1595-16:}8, 1990
[SAT93] Simo J .C., F. Armero and R.L. Taylor, Improved Version of Assumed
Enhanced Strain Tri-Linear Elements for 3D Finite Deformation Problems,
Comput. Methods Appl. Mech. Eng., 110, 359-386, 1993
[TBW76) Taylor R.L., P.J. Beresford and E.L. Wilson, A Nonconforming Element
for Stress Analysis, Int. J. Numer. Methods Eng., 22, 39-62, 1976
[WTD73] Wilson E.L., R.L. Taylor, W.P. Doherty and J. Ghaboussi, Incompatible
Displacement Models, in Numerical and Computer Methods in
Structural Mechanics, (eds. S.J. Fenves, N. Perrone, A.R. Robinson and
W.C. Schnobrich), Academic Press, 43-57, 1973
[WIL74] Wilson E.L., The Static Condensation Algorithm, Int. J. Numer.
Methods Eng., 8, 199-203, 1974
[WII90) Wilson E.L., A. Ibrahimbegovic, Addition of Incompatible Displacement
Modes for the Calculation of Element Stiffness and Stress, Finite
Elem. Anal. J)esign, 7, 229-242, 1990
[ZIT89) Zitukiewicz O.C. and R.L. Taylor, The Finite Element Method: Basic
Formulation aHd Linear Problems, vol I, McGraw-Hill, London, 1989