Finite elastic deformations and finite rotations of 3d continuum with independent rotation field

Authors

  • Adnan lbrahimbegovic Universite de Technologie de Compiegne Departement de Genie Mecanique Lab. LG2mS, Division MNM, BP 649, 60206 Compiegne cedex

Keywords:

3d continuum, finite rotation, elastic deformation, regularized variational principle, 8-node solid element, incompatible modes

Abstract

Several variational principles for finite elastic deformations of a continuum with independent (finite) rotation field are constructed based on the polar decomposition theorem. Their regularized forms are then discussed and reduced to the one which is the most suitable for finite element implementation. A three-dimensional 8-node solid element with 6 degrees of freedom per node (three translational and three rotational) is developed based on the preferred variational formulation and the modified method of incompatible modes. A special care is dedicated to enhancing the computational efficimcy, by considering on one hand an alternative parametrization of the finite rotation field, and on the other hand by using the operator split method in dealing with the incompatible modes. The proposed approach is evaluated on a set of challenging large displacement/large rotation problems in nonlinear elastostatics.

 

Downloads

Download data is not yet available.

References

[ALL84] Allman D.J ., A Compatible Triangular Element Including Vertex

Rotations for Plane Elasticity Problems, Comput. Struct., 19, 1-8, 1984

[ARG82] Argyris J ., An Excursion into Large Rotations, Comput. Methods

Appl. Mech. Eng., 32, 85-155, 1982

[ATL83] Atluri S.N ., Alternate Stress and Conjugate Strain Measures and

Mixed Variational Formulations Involving Rigid Rotations for Computational

Analysis of Finitely Deformed Solids with Application to Plates

and Shells- I Theory, Comput. Struct., 1, 93-116, 1983

[BAB79] B<1.t.he ILl. and S. Bolourchi, Large Displacement Analysis of ThreeDimen~

onal Ueam Structures, Int. J. Numer. Methods Eng., 14, 961-

, 1q79

[BEF85] BEr~-,a,J P.G. and C.A. Felippa, A Triangular Membrane Element

with Rotatioual Degrees of Freedom, Comput. Methods Appl. Mech.,

, 25-60, 1985

[BEN86] Ber&r,u P.G. and M.K. Nygard, Nonlinear Shell Analysis Using Free

Formulation Finite Elements, in Finite Element Method for Nonlinear

Problems, {•·ds. P.G. Bergan et al.), Springer-Verlag, Berlin, 317-338,

[BI065] Biot M.A., Mechanics of Incremental Deformations, John Wiley, London,

[CHM78] Chorin A., T.J .R. Hughes, M.F. McCracken and J .E. Marsden,

Product Formulas and Numerical Algorithms, Commun. Pure Appl.

Math., 31, 205-256, 1978

[DVB84] Dvorkin E.N. and K.J. Bathe, A Continuum Mechanics Based FourNode

~hell Ekment for General Nonlinear Analysis, Eng. Computations,

, 77·R'B, 19tH

[FDV72] Fra.f'ij~ de Veubeke B., A New Variational Principle for Finite Elastic

DisplaceP1enc<,, Int. J. Engng. Sci., 10, 745-763, 1972

[GUR81] Gurcin .1., An Jnirod'Uction to Continuum Afechanics, Academic

Press, N ~"·York, 1981

[HUB89] Hughes T.J .R. and F. I3rezzi, On Drilling Degrees of Freedom, Comput.

Metho1ls Appl. Mech. Eng., 72, 105-121, 1989

[HBM90] Hughes T.J .R., F. Brezzi, A. Masud and I. Ilarari, Finite Elements

with Drilling Degrees of Freedom, in Symposium Numer. Methods Eng.,

(eds. R. Gruber et al.), Sringer-Verlag, 3-18, 1990

[ITW90] lbrahimbegovic A., R.L. Taylor and E.L. Wilson, A Robust Membrane

Quadrilateral Element With Drilling Degrees of Freedom, Int. J.

Numer. Met.hods Eng., 30, 445-457, 1990

[IBW91] Ibrahin1begovic A. and E.L. Wilson, A Modified Method of Incompatible

Modes, Commun. Appl. Numer. Methods, 7, 187-194, 1991

[IFR93] Ibrahimbegovic A., F. Frey, B. Rebora, Une approche unifiee de Ia

modelisation des structures complexes: les elements finis avec degre de

liberte de rotation, Revue europ. elem. finis, 2, 257-286, 1993

[IBR93] lbrahimbegovic A., Mixed Finite Element with Drilling Rotations for

Plane Problems in Elasticity, Comput. Methods Appl. Mech. Eng., 107,

-23R, 1993

[IBF93] Ibr;'thimLcgovic A. and F. Frey, Geometrically Nonlinear Method of

lncompat.ihlc Modes in Application to Finite Elasticity With Independent

Rotation'>, Int J. N umer. Methods Eng., 36, 4185-4200, 1993

[IBR94] lbrahimbegovic A., On Implicit Integration for a General Form of

Rate-lndq)endent Plasticity, Int. J. Eng. Modeling, 7, 21-27, 1994

[IFK95] lbranim!Jegovic A., F. Frey and I. Kozar, Computational Aspects

of Vector-Like Parameterization of Three-Dimensional Finite Rotations,

Int. J. N unwr. Methods Eng., in press, 1995

[JEF86] Jetteur Ph. and F. Frey, A Four Node Marguerre Element for Nonlinear

Shell Analysis, Eng. Comput., 3, 276-282, 1986

[KOI76] Koiter W.T., On the Complementary Energy Theorem in Nonlinear

Elasticity, in Trends in Applications of Pure Mathematics to Mechanics,

(ed. G. Fichera), Pitman Publishing, 207-232, 1976

[MAH83] Marsden J .E. and T.J .R. Hughes, Mathematical Foundations of

Elasticity, Prentice Hall, Englewood Cliffs, NJ, 1983

[RAD94] Radovitzky R.A. and E. Dvorkin, A 3D Element for Non-linear Analysis

of SoliJs, Commun. Numer. Methods Eng., 10, 183-194, 1994

[REI84] Reiss.wr E., Formulation of Variational Theorems in Geometrically

Nonlinear Elasticity, J. ASCE Eng. Mech. Div., 110, 1377-1390, 1984

[SIR90] Simo J .C. and M.S. Rifai, A Class of i·1ixed Assumed Strain Methods

and the :vlethod of Incompatible Modes, Int. J. N umer. Methods Eng.,

, 1595-16:}8, 1990

[SAT93] Simo J .C., F. Armero and R.L. Taylor, Improved Version of Assumed

Enhanced Strain Tri-Linear Elements for 3D Finite Deformation Problems,

Comput. Methods Appl. Mech. Eng., 110, 359-386, 1993

[TBW76) Taylor R.L., P.J. Beresford and E.L. Wilson, A Nonconforming Element

for Stress Analysis, Int. J. Numer. Methods Eng., 22, 39-62, 1976

[WTD73] Wilson E.L., R.L. Taylor, W.P. Doherty and J. Ghaboussi, Incompatible

Displacement Models, in Numerical and Computer Methods in

Structural Mechanics, (eds. S.J. Fenves, N. Perrone, A.R. Robinson and

W.C. Schnobrich), Academic Press, 43-57, 1973

[WIL74] Wilson E.L., The Static Condensation Algorithm, Int. J. Numer.

Methods Eng., 8, 199-203, 1974

[WII90) Wilson E.L., A. Ibrahimbegovic, Addition of Incompatible Displacement

Modes for the Calculation of Element Stiffness and Stress, Finite

Elem. Anal. J)esign, 7, 229-242, 1990

[ZIT89) Zitukiewicz O.C. and R.L. Taylor, The Finite Element Method: Basic

Formulation aHd Linear Problems, vol I, McGraw-Hill, London, 1989

Downloads

Published

1995-06-06

How to Cite

lbrahimbegovic, A. . (1995). Finite elastic deformations and finite rotations of 3d continuum with independent rotation field. European Journal of Computational Mechanics, 4(5-6), 555–576. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3539

Issue

Section

Original Article