Dynamique et schemas d'integration pour modeles de poutres geometriquement exacts

Authors

  • Mazen AI Mikdad Universite de Technologie de Compiegne Division Modeles Numeriques en Mecanique Laboratoire G2mS, UPRES ass. 6606 CNRS Departement Genie des Systemes Mecaniques BP 20529, F-60205 Compiegne
  • Adnan lbrahimbegovic Universite de Technologie de Compiegne Division Modeles Numeriques en Mecanique Laboratoire G2mS, UPRES ass. 6606 CNRS Departement Genie des Systemes Mecaniques BP 20529, F-60205 Compiegne

Keywords:

nonlinear dynamics, geometrically exact beam theory, finite rotations, Newmark scheme

Abstract

In this work, we examine the aspects pertinent to the theory and numerical implementation of step by step integration schemes for the nonlinear dynamic analysis of beams subjected to finite rotations. The considered model problem is the Reissner's geometrically exact 3d beam theory without any constraint on displacements and rotations. Among several possible parametrizations of rotations, we choose the material representation of the incremental rotation vector, which simplifies the construction of the associated time integration scheme. Special emphasis is directed towards the exact linearization of the equations of motion and pertinent implementation details.

 

Downloads

Download data is not yet available.

References

[Arg82] J .H. Argyris. An excursion into large rotations. Comp. Methods Appl.

Mech. Eng., 32:85-155, 1982.

[BE76] K.J. Bathe and Wilson E.L. Numerical Methods in Finite Element

Analysis. Prentice-Hall, Englewood Chiffs, 1976.

[CG88] A. Cardona and M. Geradin. A beam finite element non-linear theory

with finite rotations. Int. J. Numer. Methods Eng., 26:2403-2438,

[HCL78] T.J.R. Hughes, T.K. Caughey, and W.K. Lin. Finite element methods

for nonlinear elastodynamics which conserve energy. ASME J. Appl.

Mech., 45:36-370, 1978.

[HSD77] E. Haug, N.Q. Son, and A.L. DeRouvray. An improved energy conserving

implicit time integration algorithm for nonlinear dynamic structural

analysis. In Transactions of 4th International Conference on

Structural Mechanics in Reactor Technology, San Francisco, 1977.

[IAM96] A. lbrahimbegovic and M. AI Mikdad. On dynamics of finite rotations

of 3d beams, Proceedings of Second ECCOMAS Conference on

Numerical Methods in Engineering, pages 447-453. Desideri J.L. et

a!., John Wiley, London, 1996.

[IAM97] A. lbrahimbegovic and M. AI Mikdad. Finite rotations in dynamics

of beams and implicit time-stepping schemes. Int. J. Numer. Methods

Eng., in press, 1997.

[Ibr97] A. lbrahimbegovic. On the Choice of Finite Rotation Parameters.

Comp. Methods Appl. Mech. Eng. (Anniversary Volume Dedicated

to J.T. Oden), in press, 1997.

[IFK95] A. lbrahimbegovic, F. Frey, and I. Kozar. Computational aspects

of vector-like parameterization of three-dimensional finite rotations.

Int. J. Numer. Methods Eng., 38:3653-3673, 1995.

[MH83] J.E Marsden and T.J.R Hughes. Mathematical Foundations of Elasticity.

Prentice-Hall, Englewoods Cliffs , N.J., 1983.

[Rei72] E. Reissner. On one-dimensional finite strain beam theory: The plane

problem. J. Appl. Math. Phys., 23:795-804, 1972.

[Sim85] J .C. Simo. A finite-strain beam formulation. the three-dimensional

dynamic problem. part 1. Comp. Methods Appl. Mech. Eng., 49:55-

, 1985.

[Spu78] R.A. Spurrier. Comment on 'singularity-free extraction of a quaternion

from a direction-cosine matrix'. J. Spacecraft, 15:255-256, 1978.

[SVQ88] J .C. Simo and L. Vu-Quoc. On the dynamics in space of rods undergoing

large motions: A geometrically exact approach. Comp. Methods

Appl. Mech. Eng., 66:125-161, 1988.

[ZT89] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method: Basic

Formulation and Linear Problems, volume 1. McGraw-Hill, London,

Downloads

Published

1997-02-11

How to Cite

Mikdad, M. A. ., & lbrahimbegovic, A. . (1997). Dynamique et schemas d’integration pour modeles de poutres geometriquement exacts. European Journal of Computational Mechanics, 6(4), 471–502. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3439

Issue

Section

Original Article