Numerical prediction of the fiber orientation in steady flows

Authors

  • Francisco Chinesta Materiaux Macromoleculaires Conservatoire National des Arts et Metiers 292 rue Saint Martin, F-75141 Paris cedex 03
  • Arnaud Poitou Laboratoire de Mecanique et Technologie ENS Cachan I C.N.R.S. I Universite Paris 6 61, Avenue du President Wilson F-94235 Cachan cedex
  • Rafael Torres Departamento de Mecdnica de los Medios Continuos Universidad Politecnica de Valencia Camino de Vera sin. 46071 Valencia. Spain

Keywords:

short fiber reinforced thermoplastic flow, transport equation, method of characteristics, SUPG finite elements method, discontinuous finite volumes

Abstract

Modelling fibers orientation induced by the flow of short fiber reinforced thermoplastic involves a classical anisotropic Stokes flow problem and a hyperbolic orientation equation. This paper aims to achieve a comparison between different solution techniques suited to the hyperbolicity of the orientation equation (viz. the method of characteristics, the SUPG method and the discontinuous finite volume method).

Downloads

Download data is not yet available.

References

[ALT 92] ALTAN, M. C., GU~ERI, S.l., PIPES, R.B., «Anisotropic channel flow of

fiber suspensions», J. Non-Newtonian Fluid Mech., vol. 42, 1992, pp. 65-83.

[AUS 91] AUSIAS, G., Etude de )'extrusion de tubes en polymeres thermoplastiques

charges de fibres courtes, PhD thesis, ENSMP, 1991.

[BAT 70] BATCHELOR, G. K., «Slender-body theory for particules of arbitrary

cross-section in stokes flow», J. Fluid Mech., vol. 44, 1970, pp. 419-440.

[CHB 90] CHIBA, K., NAKAMURA, K., BOGER, D. V., «A numerical solution for

the flow of dilute fiber suspensions through an axisymmetric contraction», J.

Non-Newtonian Fluid Mech., vol. 35, 1990, pp. 1-14.

[CHI 95] CHINESTA, F., OLMOS, F., POITOU, A., TORRES, R., «0rientaci6n de

las fibras en flujos recirculantes», Asociaci6n Espanola de Materiales Compuestos,

, pp. 395-402.

[FOR 83] FORTIN, M., GLOWINSKI, R., Augmented lagrangian methods: applications

to the numerical solution of boundary value problems, North Holland,

[GIV 82] GIVLER, C., CROCHET, M. J., PIPES, R. B., «Numerically predicted fiber

orientation in dilute suspensions», NUMIFORM, Pineridge Press, 1982, pp.

-575.

[HAN 62] HAND, G. L., «A theory of anisotropic fluids», J. Fluid Mech., vol. 13,

, pp. 33-46.

[HIN 75] HINCH, E. J., LEAL, L. G., «Constitutive equations in suspension mechanics.

Part 1», J. Fluid Mech., vol. 71, 1975, pp. 481-495.

[HIN 76] HINCH, E. J., LEAL, L. G., «Constitutive equations in suspension mechanics.

Part II», J. Fluid Mech .• vol. 76, 1976, pp. 187-208.

[LIP 88] LIPSCOMB G. G., DENN, M. M., HUR, D. H., BOGER, D. H., «The flow

of fiber suspensions in complex geometries», J. Non-Newtonian Fluid Mech.,

vol.26, 1988,pp.297-325.

[MES 97] MESLIN, F., Proprietes Rheologiques des Composites Fibres Courtes a

l'Etat Fondu, PhD thesis, ENS de Cachan, 1997.

[PIR 89) PIRONNEAU, 0. Finite methods for fluids, Wiley, 1989.

[POI 93] POITOU, A., CHINESTA, F., OLMOS, F. «Statistical modelling for the flow

of short fiber composites», NATO Applied Science, vol. 269, 1993, pp. 293-

[POI 98] POITOU, A., CHINESTA, F., TORRES, R. «Numerical simulation of the

steady recirculating flows of fiber suspensions». To appear in J. Non New.

FluidMech.

[ROS 90) ROSENBERG, J., DEEN, M., KEUNINGS, R. «Simulation of nonrecirculating

flows of dilute fiber suspensions», J. Non-Newtonian Fluid

Mech., vol. 37, 1990,pp. 317-345.

[SOU 96] SOULOUMIAC, B. Etude rheologique, modelisation et simulation numerique

de l'ecoulement des thermoplastiques charges de fibres courtes, PhD.

thesis, ENSMP, 1996.

Downloads

Published

1999-04-01

How to Cite

Chinesta, F. ., Poitou, A. ., & Torres, R. . (1999). Numerical prediction of the fiber orientation in steady flows. European Journal of Computational Mechanics, 8(4), 355–374. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3001

Issue

Section

Original Article