Numerical prediction of the fiber orientation in steady flows
Keywords:
short fiber reinforced thermoplastic flow, transport equation, method of characteristics, SUPG finite elements method, discontinuous finite volumesAbstract
Modelling fibers orientation induced by the flow of short fiber reinforced thermoplastic involves a classical anisotropic Stokes flow problem and a hyperbolic orientation equation. This paper aims to achieve a comparison between different solution techniques suited to the hyperbolicity of the orientation equation (viz. the method of characteristics, the SUPG method and the discontinuous finite volume method).
Downloads
References
[ALT 92] ALTAN, M. C., GU~ERI, S.l., PIPES, R.B., «Anisotropic channel flow of
fiber suspensions», J. Non-Newtonian Fluid Mech., vol. 42, 1992, pp. 65-83.
[AUS 91] AUSIAS, G., Etude de )'extrusion de tubes en polymeres thermoplastiques
charges de fibres courtes, PhD thesis, ENSMP, 1991.
[BAT 70] BATCHELOR, G. K., «Slender-body theory for particules of arbitrary
cross-section in stokes flow», J. Fluid Mech., vol. 44, 1970, pp. 419-440.
[CHB 90] CHIBA, K., NAKAMURA, K., BOGER, D. V., «A numerical solution for
the flow of dilute fiber suspensions through an axisymmetric contraction», J.
Non-Newtonian Fluid Mech., vol. 35, 1990, pp. 1-14.
[CHI 95] CHINESTA, F., OLMOS, F., POITOU, A., TORRES, R., «0rientaci6n de
las fibras en flujos recirculantes», Asociaci6n Espanola de Materiales Compuestos,
, pp. 395-402.
[FOR 83] FORTIN, M., GLOWINSKI, R., Augmented lagrangian methods: applications
to the numerical solution of boundary value problems, North Holland,
[GIV 82] GIVLER, C., CROCHET, M. J., PIPES, R. B., «Numerically predicted fiber
orientation in dilute suspensions», NUMIFORM, Pineridge Press, 1982, pp.
-575.
[HAN 62] HAND, G. L., «A theory of anisotropic fluids», J. Fluid Mech., vol. 13,
, pp. 33-46.
[HIN 75] HINCH, E. J., LEAL, L. G., «Constitutive equations in suspension mechanics.
Part 1», J. Fluid Mech., vol. 71, 1975, pp. 481-495.
[HIN 76] HINCH, E. J., LEAL, L. G., «Constitutive equations in suspension mechanics.
Part II», J. Fluid Mech .• vol. 76, 1976, pp. 187-208.
[LIP 88] LIPSCOMB G. G., DENN, M. M., HUR, D. H., BOGER, D. H., «The flow
of fiber suspensions in complex geometries», J. Non-Newtonian Fluid Mech.,
vol.26, 1988,pp.297-325.
[MES 97] MESLIN, F., Proprietes Rheologiques des Composites Fibres Courtes a
l'Etat Fondu, PhD thesis, ENS de Cachan, 1997.
[PIR 89) PIRONNEAU, 0. Finite methods for fluids, Wiley, 1989.
[POI 93] POITOU, A., CHINESTA, F., OLMOS, F. «Statistical modelling for the flow
of short fiber composites», NATO Applied Science, vol. 269, 1993, pp. 293-
[POI 98] POITOU, A., CHINESTA, F., TORRES, R. «Numerical simulation of the
steady recirculating flows of fiber suspensions». To appear in J. Non New.
FluidMech.
[ROS 90) ROSENBERG, J., DEEN, M., KEUNINGS, R. «Simulation of nonrecirculating
flows of dilute fiber suspensions», J. Non-Newtonian Fluid
Mech., vol. 37, 1990,pp. 317-345.
[SOU 96] SOULOUMIAC, B. Etude rheologique, modelisation et simulation numerique
de l'ecoulement des thermoplastiques charges de fibres courtes, PhD.
thesis, ENSMP, 1996.