Interpolation naturelle sur les domaines non convexes par l’utilisation du diagramme de Voronoï contraint

Méthode des éléments C-naturels

Authors

  • Julien Yvonnet Laboratoire de Mécanique des Systèmes et des Procédés UMR CNRS ENSAM – ESEM 151 boulevard de l’Hôpital, F-75013 Paris
  • David Ryckelynck Laboratoire de Mécanique des Systèmes et des Procédés UMR CNRS ENSAM – ESEM 151 boulevard de l’Hôpital, F-75013 Paris
  • Philippe Lorong Laboratoire de Mécanique des Systèmes et des Procédés UMR CNRS ENSAM – ESEM 151 boulevard de l’Hôpital, F-75013 Paris
  • Francisco Chinesta Laboratoire de Mécanique des Systèmes et des Procédés UMR CNRS ENSAM – ESEM 151 boulevard de l’Hôpital, F-75013 Paris

Keywords:

C-NEM, non-convex bodies, constrained Voronoï diagram, visibility criterion, essential boundary conditions

Abstract

The natural elements method (NEM) is a new technique considered as a “meshless method” based on Sibson co-ordinates for the solution of partial differential equations. The NE shape functions are strictly interpolant which makes easy the imposition of essential boundary conditions. However, issues occur over non-convex boundaries : interpolant is not stricly linear over the whole boundary and interaction between nodes over close boundaries, like cracks, can also occur. Solutions proposed so far fail in cases like these. We propose a methodology to compute the shape functions by mean of a modified constrained Voronoï diagram. Respect of all main properties of the natural elements methods by this way without regard on the gometry of the domain is discussed

Downloads

Download data is not yet available.

References

Belytschko T., Kronggauz Y., Fleming M., Organ D., Liu W. K., “Smoothing and accelerated

Computations in the Element free Galerkin Method”, 1995.

Belytschko T., Kronggauz Y., Organ D., Fleming M., “Meshless Methods : An overview and

Recent Developments”, Comput. Meth. Appl. Mech. Engng., vol. 139, 1996, p. 3-47.

Belytschko T., Liu W. K., Singer M., “On adaptativity and error Criteria for meshfree

methods”, New Advances in Adaptive Computational Methods in Mechanics, edited by P.

Ladeveze and J. T. Oden.

Belytschko T., Lu Y. Y., GU L., “Element-Free Galerkin Methods”, Int. J. Numer. Meth. Eng.,

vol. 37, 1994, p. 229-256.

Borgers B., “Generalized Delaunay triangulations of non-convex domains”, Comput. Math.

Appl., vol. 20, n° 7, p. 45-49.

Bowyer A., “Computing the Dirichlet tessellation”, The Computer Journal, vol. 24, n° 2,

, p. 162-166.

Braun J., Sambridge S., “A numerical method for solving partial aquations on highly irregular

grids”, Nature, vol. 376, 1995, p. 655-660.

Chen J. S., Pan C., Wu C. T. Liu W. K., “Reproductive Kernel Particle Methods for large

deformation analysis of non linear structures”, Comput. Meth. Appl. Mech. Engng.,

vol. 139, 1996, p. 195-129.

Chen J.S., Wang H. P., “New boundary conditions treatments un meshfree computation of

contact problems”, Comput. Meth. Appl. Mech. Engng, 1998.

Chen J-S.,Wu C-T., Yoon S.,You Y., “A stabilized conforming nodal integration for Galerkin

mesh-free methods”, Int. J. Numer. Meth. Engng, vol. 50, 2001, p. 435-466.

Cueto E., Doblaré M., Gracia L., “Imposing essential boundary conditions in the natural

elements method by means of density-scaled alpha-shapes”, Int. J. Numer. Meth. Engng,

vol. 49, 2000, p. 519-546.

Cueto E., Cegoñino J., Calvo B., Doblaré M, “On the imposition of essential boundary

conditions in Natural Neighbour Galerkin Methods”, Accepté en communication dans Int.

J. Numer. Meth. Engng, 2002.

Dolbow J., Belytschko T., “Numerical integration of the Galerkin weak form in meshfree

methods”, Computational Mechanics, vol. 23, 1999, p. 219-230.

Fleming M., Chu Y. A., Moran B., Belytschko T., “Enriched element-free Galerkin Methods

for crack tip-fields”, Int. J. Numer. Meth. Engng, vol. 40, 1997, p. 1483-1504.

Günther F. C., Liu W. K., “Implementation of boundary conditions for meshless methods”,

Comput. Meth. Appl. Mech. Engng., submitted,1997.

Kaljevic I., Saigal S., “An improved Element Free Galerkin Formulation”, Int. J. Numer.

Meth. Engng, vol. 40, 1997, p. 2953-2974.

Klein R., Lingas A., “A linear-time randomized algorithm for the bounded Voronoï diagram

of a simple polygon”, International Journal of Computational Geometry and

applications, vol 6, 1996, p. 263-278.

Nayrolles B., Touzot G., Villon P., “Generalizing the finite element method: Diffuse

approximation and diffuse elements”, Computational Mechanics, vol. 10, issue 5, 1992,

p. 307-318.

Organ D., Fleming M., Terry T. Belytschko T., “Continuous meshless approximations for

Nonconvex bodies by Diffraction and Transparency”, New Advances in Adaptive

Computational Mechanics, vol. 19, 1996, p. 1-11.

Sambridge M., Braun J., Mc Queen M., “Geophisical parameterization and interpolation of

irregular data using natural neighbors”, Geophysi. J. Int., vol. 122, 1995, p. 837-857.

Sibson R., “A vector Identity for the Dirichlet tesselations”, Math. Proc. Camb. Phil. Soc.,

vol. 87, 1980, p. 151-155.

Sukumar N., Moran B., Belytschko T., “The Natural Elements Method in solid mechanics”,

Int. J. Numer. Meth. Engng, vol. 43, 1998, p. 839-887.

Sukumar N., Moran B., Semenov A. Y., Belikov V., “Natural

Int. J. Numer. Meth. Engng, vol. 50, 2001, p. 207-219.

Watson D. F., “Computing the n-dimensional Delaunay tessellation with application to

Voronoï polytopes”, The Computer Journal, vol. 24, n° 2, 1981, p. 167-172.

Zhu T., Atluri S. N., “A modified collocation method and a penalty formulation for enforcing

the essential boundary conditions in the Element-free Galerkin Method”, Computational

Mechanics, vol. 21, 1998, p. 211-222.

Downloads

Published

2003-06-11

How to Cite

Yvonnet, J. ., Ryckelynck, D. ., Lorong, P. ., & Chinesta, F. . (2003). Interpolation naturelle sur les domaines non convexes par l’utilisation du diagramme de Voronoï contraint: Méthode des éléments C-naturels. European Journal of Computational Mechanics, 12(4), 487–509. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2437

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 > >>