Interpolation naturelle sur les domaines non convexes par l’utilisation du diagramme de Voronoï contraint
Méthode des éléments C-naturels
Keywords:
C-NEM, non-convex bodies, constrained Voronoï diagram, visibility criterion, essential boundary conditionsAbstract
The natural elements method (NEM) is a new technique considered as a “meshless method” based on Sibson co-ordinates for the solution of partial differential equations. The NE shape functions are strictly interpolant which makes easy the imposition of essential boundary conditions. However, issues occur over non-convex boundaries : interpolant is not stricly linear over the whole boundary and interaction between nodes over close boundaries, like cracks, can also occur. Solutions proposed so far fail in cases like these. We propose a methodology to compute the shape functions by mean of a modified constrained Voronoï diagram. Respect of all main properties of the natural elements methods by this way without regard on the gometry of the domain is discussed
Downloads
References
Belytschko T., Kronggauz Y., Fleming M., Organ D., Liu W. K., “Smoothing and accelerated
Computations in the Element free Galerkin Method”, 1995.
Belytschko T., Kronggauz Y., Organ D., Fleming M., “Meshless Methods : An overview and
Recent Developments”, Comput. Meth. Appl. Mech. Engng., vol. 139, 1996, p. 3-47.
Belytschko T., Liu W. K., Singer M., “On adaptativity and error Criteria for meshfree
methods”, New Advances in Adaptive Computational Methods in Mechanics, edited by P.
Ladeveze and J. T. Oden.
Belytschko T., Lu Y. Y., GU L., “Element-Free Galerkin Methods”, Int. J. Numer. Meth. Eng.,
vol. 37, 1994, p. 229-256.
Borgers B., “Generalized Delaunay triangulations of non-convex domains”, Comput. Math.
Appl., vol. 20, n° 7, p. 45-49.
Bowyer A., “Computing the Dirichlet tessellation”, The Computer Journal, vol. 24, n° 2,
, p. 162-166.
Braun J., Sambridge S., “A numerical method for solving partial aquations on highly irregular
grids”, Nature, vol. 376, 1995, p. 655-660.
Chen J. S., Pan C., Wu C. T. Liu W. K., “Reproductive Kernel Particle Methods for large
deformation analysis of non linear structures”, Comput. Meth. Appl. Mech. Engng.,
vol. 139, 1996, p. 195-129.
Chen J.S., Wang H. P., “New boundary conditions treatments un meshfree computation of
contact problems”, Comput. Meth. Appl. Mech. Engng, 1998.
Chen J-S.,Wu C-T., Yoon S.,You Y., “A stabilized conforming nodal integration for Galerkin
mesh-free methods”, Int. J. Numer. Meth. Engng, vol. 50, 2001, p. 435-466.
Cueto E., Doblaré M., Gracia L., “Imposing essential boundary conditions in the natural
elements method by means of density-scaled alpha-shapes”, Int. J. Numer. Meth. Engng,
vol. 49, 2000, p. 519-546.
Cueto E., Cegoñino J., Calvo B., Doblaré M, “On the imposition of essential boundary
conditions in Natural Neighbour Galerkin Methods”, Accepté en communication dans Int.
J. Numer. Meth. Engng, 2002.
Dolbow J., Belytschko T., “Numerical integration of the Galerkin weak form in meshfree
methods”, Computational Mechanics, vol. 23, 1999, p. 219-230.
Fleming M., Chu Y. A., Moran B., Belytschko T., “Enriched element-free Galerkin Methods
for crack tip-fields”, Int. J. Numer. Meth. Engng, vol. 40, 1997, p. 1483-1504.
Günther F. C., Liu W. K., “Implementation of boundary conditions for meshless methods”,
Comput. Meth. Appl. Mech. Engng., submitted,1997.
Kaljevic I., Saigal S., “An improved Element Free Galerkin Formulation”, Int. J. Numer.
Meth. Engng, vol. 40, 1997, p. 2953-2974.
Klein R., Lingas A., “A linear-time randomized algorithm for the bounded Voronoï diagram
of a simple polygon”, International Journal of Computational Geometry and
applications, vol 6, 1996, p. 263-278.
Nayrolles B., Touzot G., Villon P., “Generalizing the finite element method: Diffuse
approximation and diffuse elements”, Computational Mechanics, vol. 10, issue 5, 1992,
p. 307-318.
Organ D., Fleming M., Terry T. Belytschko T., “Continuous meshless approximations for
Nonconvex bodies by Diffraction and Transparency”, New Advances in Adaptive
Computational Mechanics, vol. 19, 1996, p. 1-11.
Sambridge M., Braun J., Mc Queen M., “Geophisical parameterization and interpolation of
irregular data using natural neighbors”, Geophysi. J. Int., vol. 122, 1995, p. 837-857.
Sibson R., “A vector Identity for the Dirichlet tesselations”, Math. Proc. Camb. Phil. Soc.,
vol. 87, 1980, p. 151-155.
Sukumar N., Moran B., Belytschko T., “The Natural Elements Method in solid mechanics”,
Int. J. Numer. Meth. Engng, vol. 43, 1998, p. 839-887.
Sukumar N., Moran B., Semenov A. Y., Belikov V., “Natural
Int. J. Numer. Meth. Engng, vol. 50, 2001, p. 207-219.
Watson D. F., “Computing the n-dimensional Delaunay tessellation with application to
Voronoï polytopes”, The Computer Journal, vol. 24, n° 2, 1981, p. 167-172.
Zhu T., Atluri S. N., “A modified collocation method and a penalty formulation for enforcing
the essential boundary conditions in the Element-free Galerkin Method”, Computational
Mechanics, vol. 21, 1998, p. 211-222.