Asymptotic Numerical Method for Nonlinear Constitutive Laws
Keywords:
perturbation techniques, finite elements method, nonlinear computation, plasticityAbstract
This paper deals with the application of the asymptomatic numerical method (ANM) to problems involving nonlinear constitutive laws. We are interested in the deformation theory of plasticity which does not take into account the elastic unloading. We show how to obtain a quadratic form of the problem, what allows us to apply easily the perturbation techniques and to obtain the fastest algorithm. Three constitutive behaviors will be analyzed and some examples will be presented to assess the interest of the proposed algorithm as compared with the classical iterative method of Newton-Raphson.
Downloads
References
[ABA 95] ABAQUS, Theory and users' manuals (version 5.5 ). Hibbitt, Karlsson and Sorenson,
Inc., 1080 Main Street, Pawtucket, RI 02860, USA, 1995.
[AMM 96] AMMAR S., Methode asymptotique numerique perturbee appliquee a Ia resolution
des probh!mes non lineaires en grande rotation et grand deplacement. These, Universite
Laval, Quebec, 1996.
[AZR 93] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., An asymptoticnumerical
method to compute the post-buckling behaviour of elastic plates and shells. Int.
J. Numer. Meth. Eng., vol. 36, p. 1251-1277,1993.
[BOU 94] BOUTYOUR E. H., Methode Asymptotique-Numerique pour le calcul de bifurcations:
Application aux structures elastiques. These, Universite de Metz, France, 1994.
[BRA 95] BRAIKAT B., Methode asymptotique-numerique et fortes non-linearites. These,
Universite Hassan II, Casablanca, 1995.
[BRA 97] BRAIKATB., DAMIL N., POTIER-FERRY M., Methode asymptotiquesnumeriques
pour Ia plasticite. Revue Europeennedes Elements Finis, vol. 6, p. 337-357, 1997.
[BUC94] BOCHTER N., RAMM E., ROEHL D., Three dimensional extension of non-linear
shell formulation based on the Enhanced Assumed Strain Concept. Int. J. Numer. Meth.
Eng., vol. 37, p. 2551-2568,1994.
[CAD 97] CADOU. J .M ., Methode asymptotique numerique pour le calcul des branches solutions
et des instabilites dans les fluides et pour les problemes d' interaction fluide-structure.
These, Universite de Metz, 1997.
[CHE 94] CHEN W.F., Constitutive Equations for Engineering Materials. Elsevier, 1994.
Volume 2: Plasticity and modelling.
[COC 941] COCHELIN B., A path-following technique via an asymptotic-numerical method.
Camp. and Struct., vol. 53, p. II8I-II92,I994.
[COC 942] COCHELIN B., DAMIL N., POTIER-FERRY M., The asymptotic-numerical me~
thod: an efficient perturbation technique for non-linear structural mechanics. Revue Europeennedes
Elements Finis, vol. 3, p. 28I-297,I994.
[CRI 83] CRIESFIELD M.A. , An arc-length method including line search and acceleration.
Int. J. Numer. Meth. Eng., vol. I9, p. I269-I289, 1983.
[DAM 97] DAMJANIC F.B., BRANK B., PERIC D., Elasto-plasticity in the non-linear thin
shell modelling. Computational plasticity, Fundamentals and Applications, vol. I,
p. I890-I897. D.R.J. Owen, E. Onate and E. Hinton (Eds.), Barcelona I997.
[DES 97] DESCAMPS J., CAO H.-L., POTIER-FERRY M., An asymptotic numerical method
to solve large strain viscoplastic problems. Computational plasticity, Fundamentals and
Applications, D.R.J. Owen, E. Onate and E. Hinton (Eds.), Barcelona I997. vol. I,
p. 393-400,I997.
[ELA 97] ELASMAR H., Calcul des structures plastiques par Ia Methode Asymptotique Numerique.
These, Universite Hassan II, Casablanca, I997.
[GRE 65] GREEN A.E., NAGHDI P.M., A general theory of an elastic-plastic continuum.
Arch. Rat. Mech. Anal., vol. 18, p. 251-281, 1965.
[HAJ 95] HADJI S ., Methodes de resolution pour les fluides incompressibles. These, Universite
de Techno Iogie de Compiegne, 1995.
[ELH 98] ELHAGE HUSSEIN A., DAMIL N., POTIER-FERRY M., An asymptotic numerical
algorithm for frictionless contact problems. Revue Europeenne des Eliments Finis, vol. 7,
n° 1-2-3, p. 119-130,1998. Hermes, Paris.
[MAU 92] MAUGIN G.A., The Thermomechanics of Plasticity and Fracture. Cambridge
University Press, 1992.
[NAJ 98] NAJAH A., COCHELIN B., DAMIL N., POTIER-FERRY M., A critical review of
asymptotic numerical methods. Archives of Computational Methods in Engineering,
vol. 5, no 1, p.31-50, 1998.
[NOO 80] A.K. NOOR, J.M. PETERS., Reduced basis technique for nonlinear analysis of
structures. AIAA Journal, vo!. 18, n° 4, 1980. Article No. 79-0747R.
[NOO 811] NOOR. A.K., Recent advances in reduction methods for nonlinear problems. Computers
and Structures, vol. 13, p. 31-44,1981.
[NOO 812] A.K. NOOR, J.M. PETERS., Tracing post-limit-point paths with reduced basis
technique. Camp. Meth. Appl. Mech. Eng., vol. 28, p. 217-240,1981.
[POT 971] POTIER-FERRY M., DAMIL N., BRAIKATB., DESCAMPS J., CADOU J.M., CAO
H.L., ELHAGE HussEIN A., Traitement des fortes non-linearites par Ia methode asymptotique
numerique. C. R. Acad. Sci. Paris, t.324, Serle II b, p.171-177, 1997.
[POT 972] POTIER-FERRY M., CAO H.L., DESCAMPS J., N. DAMIL, An asymptotic numerical
method for numerical analysis of large deformation viscoplastic problems. Computers
and Structures, submitted.
[RIK 72] RIKS E., The application of Newton's method to the problem of elastic stability.
Journal of Applied Mechanics, vol. 39, p. 1060-1066, 1972.
[RIK 84] RIKS E., Some computational aspects of the stability analysis of nonlinear structures.
Camp. Meth. Appl. Mech. Eng., vol. 47, p. 219-259, 1984.
[TH068] J .M. T. THOMPSON , A.C. WALKER., The non-linear perturbation analysis of discrete
structural systems. lnt.J. Solids Structures, vo!. 4, p. 757-768, 1968.
[TRI 96] TRIA., COCHELIN B., POTIER-FERRY M. , Resolution des equations de NavierStokes
et detection des bifurcations stationnaires par une Methode Asymptotique Numerique.
Revue Europeennedes Eliments Finis, vol. 5, p. 415-442,1996.
[VAN 98] VANNUCCI P., COCHELIN B., DAMIL N., POTIER-FERRY M., An asymptoticnumerical
method to compute bifurcating branches. Int. J. Numer. Meth. Eng.,
vol. 41, p.1365-1389,1998.
[YOK 76] YOKOO Y., NAKAMURA T., UETENI K., The incremental perturbation method for
large displacement analysis of elastic-plastic structures. Int. J. Numer. Meth. Eng., vol. 10,
p. 503-525, 1976.
[ZAH 98] ZAHROUNI H., Methode asymptotique numerique pour les coques en grandes rotations.
These, Universite de Metz, France, 1998.
[ZAH 97] ZAHROUNI H., COCHELIN B. , POTIER-FERRY M. , Computing finite rotations
of shells by an asymptotic-numerical method. Comp. Meth. Appl. Mech. Eng., 1997. to
appear.