Asymptotic Numerical Method for Nonlinear Constitutive Laws

Authors

  • Hamid Zahrouni LPMM, URA CNRS 1215, ISGMP, Universite de Metz lie du Saulcy, F-57045 Metz cedex OJ
  • Michel Potier-Ferry LPMM, URA CNRS 1215, ISGMP, Universite de Metz lie du Saulcy, F-57045 Metz cedex OJ
  • Hassan Elasmar Laboratoire de Calcul Scientifique en Mecanique Faculte des Sciences Ben M'Sik, Universite Haasan II Sidi Othman, Casablanca, Maroc
  • Noureddine Damil Laboratoire de Calcul Scientifique en Mecanique Faculte des Sciences Ben M'Sik, Universite Haasan II Sidi Othman, Casablanca, Maroc

Keywords:

perturbation techniques, finite elements method, nonlinear computation, plasticity

Abstract

This paper deals with the application of the asymptomatic numerical method (ANM) to problems involving nonlinear constitutive laws. We are interested in the deformation theory of plasticity which does not take into account the elastic unloading. We show how to obtain a quadratic form of the problem, what allows us to apply easily the perturbation techniques and to obtain the fastest algorithm. Three constitutive behaviors will be analyzed and some examples will be presented to assess the interest of the proposed algorithm as compared with the classical iterative method of Newton-Raphson.

Downloads

Download data is not yet available.

References

[ABA 95] ABAQUS, Theory and users' manuals (version 5.5 ). Hibbitt, Karlsson and Sorenson,

Inc., 1080 Main Street, Pawtucket, RI 02860, USA, 1995.

[AMM 96] AMMAR S., Methode asymptotique numerique perturbee appliquee a Ia resolution

des probh!mes non lineaires en grande rotation et grand deplacement. These, Universite

Laval, Quebec, 1996.

[AZR 93] AZRAR L., COCHELIN B., DAMIL N., POTIER-FERRY M., An asymptoticnumerical

method to compute the post-buckling behaviour of elastic plates and shells. Int.

J. Numer. Meth. Eng., vol. 36, p. 1251-1277,1993.

[BOU 94] BOUTYOUR E. H., Methode Asymptotique-Numerique pour le calcul de bifurcations:

Application aux structures elastiques. These, Universite de Metz, France, 1994.

[BRA 95] BRAIKAT B., Methode asymptotique-numerique et fortes non-linearites. These,

Universite Hassan II, Casablanca, 1995.

[BRA 97] BRAIKATB., DAMIL N., POTIER-FERRY M., Methode asymptotiquesnumeriques

pour Ia plasticite. Revue Europeennedes Elements Finis, vol. 6, p. 337-357, 1997.

[BUC94] BOCHTER N., RAMM E., ROEHL D., Three dimensional extension of non-linear

shell formulation based on the Enhanced Assumed Strain Concept. Int. J. Numer. Meth.

Eng., vol. 37, p. 2551-2568,1994.

[CAD 97] CADOU. J .M ., Methode asymptotique numerique pour le calcul des branches solutions

et des instabilites dans les fluides et pour les problemes d' interaction fluide-structure.

These, Universite de Metz, 1997.

[CHE 94] CHEN W.F., Constitutive Equations for Engineering Materials. Elsevier, 1994.

Volume 2: Plasticity and modelling.

[COC 941] COCHELIN B., A path-following technique via an asymptotic-numerical method.

Camp. and Struct., vol. 53, p. II8I-II92,I994.

[COC 942] COCHELIN B., DAMIL N., POTIER-FERRY M., The asymptotic-numerical me~

thod: an efficient perturbation technique for non-linear structural mechanics. Revue Europeennedes

Elements Finis, vol. 3, p. 28I-297,I994.

[CRI 83] CRIESFIELD M.A. , An arc-length method including line search and acceleration.

Int. J. Numer. Meth. Eng., vol. I9, p. I269-I289, 1983.

[DAM 97] DAMJANIC F.B., BRANK B., PERIC D., Elasto-plasticity in the non-linear thin

shell modelling. Computational plasticity, Fundamentals and Applications, vol. I,

p. I890-I897. D.R.J. Owen, E. Onate and E. Hinton (Eds.), Barcelona I997.

[DES 97] DESCAMPS J., CAO H.-L., POTIER-FERRY M., An asymptotic numerical method

to solve large strain viscoplastic problems. Computational plasticity, Fundamentals and

Applications, D.R.J. Owen, E. Onate and E. Hinton (Eds.), Barcelona I997. vol. I,

p. 393-400,I997.

[ELA 97] ELASMAR H., Calcul des structures plastiques par Ia Methode Asymptotique Numerique.

These, Universite Hassan II, Casablanca, I997.

[GRE 65] GREEN A.E., NAGHDI P.M., A general theory of an elastic-plastic continuum.

Arch. Rat. Mech. Anal., vol. 18, p. 251-281, 1965.

[HAJ 95] HADJI S ., Methodes de resolution pour les fluides incompressibles. These, Universite

de Techno Iogie de Compiegne, 1995.

[ELH 98] ELHAGE HUSSEIN A., DAMIL N., POTIER-FERRY M., An asymptotic numerical

algorithm for frictionless contact problems. Revue Europeenne des Eliments Finis, vol. 7,

n° 1-2-3, p. 119-130,1998. Hermes, Paris.

[MAU 92] MAUGIN G.A., The Thermomechanics of Plasticity and Fracture. Cambridge

University Press, 1992.

[NAJ 98] NAJAH A., COCHELIN B., DAMIL N., POTIER-FERRY M., A critical review of

asymptotic numerical methods. Archives of Computational Methods in Engineering,

vol. 5, no 1, p.31-50, 1998.

[NOO 80] A.K. NOOR, J.M. PETERS., Reduced basis technique for nonlinear analysis of

structures. AIAA Journal, vo!. 18, n° 4, 1980. Article No. 79-0747R.

[NOO 811] NOOR. A.K., Recent advances in reduction methods for nonlinear problems. Computers

and Structures, vol. 13, p. 31-44,1981.

[NOO 812] A.K. NOOR, J.M. PETERS., Tracing post-limit-point paths with reduced basis

technique. Camp. Meth. Appl. Mech. Eng., vol. 28, p. 217-240,1981.

[POT 971] POTIER-FERRY M., DAMIL N., BRAIKATB., DESCAMPS J., CADOU J.M., CAO

H.L., ELHAGE HussEIN A., Traitement des fortes non-linearites par Ia methode asymptotique

numerique. C. R. Acad. Sci. Paris, t.324, Serle II b, p.171-177, 1997.

[POT 972] POTIER-FERRY M., CAO H.L., DESCAMPS J., N. DAMIL, An asymptotic numerical

method for numerical analysis of large deformation viscoplastic problems. Computers

and Structures, submitted.

[RIK 72] RIKS E., The application of Newton's method to the problem of elastic stability.

Journal of Applied Mechanics, vol. 39, p. 1060-1066, 1972.

[RIK 84] RIKS E., Some computational aspects of the stability analysis of nonlinear structures.

Camp. Meth. Appl. Mech. Eng., vol. 47, p. 219-259, 1984.

[TH068] J .M. T. THOMPSON , A.C. WALKER., The non-linear perturbation analysis of discrete

structural systems. lnt.J. Solids Structures, vo!. 4, p. 757-768, 1968.

[TRI 96] TRIA., COCHELIN B., POTIER-FERRY M. , Resolution des equations de NavierStokes

et detection des bifurcations stationnaires par une Methode Asymptotique Numerique.

Revue Europeennedes Eliments Finis, vol. 5, p. 415-442,1996.

[VAN 98] VANNUCCI P., COCHELIN B., DAMIL N., POTIER-FERRY M., An asymptoticnumerical

method to compute bifurcating branches. Int. J. Numer. Meth. Eng.,

vol. 41, p.1365-1389,1998.

[YOK 76] YOKOO Y., NAKAMURA T., UETENI K., The incremental perturbation method for

large displacement analysis of elastic-plastic structures. Int. J. Numer. Meth. Eng., vol. 10,

p. 503-525, 1976.

[ZAH 98] ZAHROUNI H., Methode asymptotique numerique pour les coques en grandes rotations.

These, Universite de Metz, France, 1998.

[ZAH 97] ZAHROUNI H., COCHELIN B. , POTIER-FERRY M. , Computing finite rotations

of shells by an asymptotic-numerical method. Comp. Meth. Appl. Mech. Eng., 1997. to

appear.

Downloads

Published

1998-07-18

How to Cite

Zahrouni, H. ., Potier-Ferry, M., Elasmar, H. ., & Damil, N. . (1998). Asymptotic Numerical Method for Nonlinear Constitutive Laws. European Journal of Computational Mechanics, 7(7), 841–869. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3057

Issue

Section

Original Article