Algorithmes d’intégration temporelle implicites couplés avec des résoluteurs d’ordre élevé
Keywords:
non-linear, instationary, implicit algorithms, homotopy, perturbation, Asymptotic Numerical Method, non-linear wavesAbstract
In this paper, we develop some new implicit algorithms for solving instationary non-linear problems. The proposed algorithms are variants of Asymptotic Numerical Methods (ANM). They are obtained by coupling the perturbation method, the homotopy technique and classical time-space discretization procedures. The efficiency of these algorithms is tested on a model for non-linear wave propagation phenomena typified by the Fisher equation. The obtained results prove a computational cost save in comparison with other algorithms for non-linear problems.
Downloads
References
Allgower E.L., Georg K., Numerical continuation methods. An Introduction, Springer Series
in Computational Mathematics, Springer-Verlag, Berlin, 1990.
Argyris J., Mlejnek H.P., Texts on Computational Mechanics. Dynamics of structures, North
Holland, Amsterdam, 1991.
Bathe K.J., Wilson E.L., Numerical methods in finite element analysis, Prentice-Hall, New
Jersey, 1976.
Bathe K.J., Finite element procedures, Prentice-Hall, New Jersey, 1986.
Berrahma-Chekroun N., Fafard M., Gervais J.J., “Resolution of the transient dynamic
problem with arbitrary load using the asymptotic method”, Journal of Sound and
Vibration, Vol. 243,, 2001, p. 475-501.
Braikat B., Quelques contributions dans l’application de la méthode asymptotique numérique
en mécanique, Doctorat d’Etat, Faculté Sciences Ben M’Sik, Casablanca, Maroc, 2000.
Cadou J.M., Cochelin B., Damil N., Potier-Ferry M., “ANM for instationary Navier-Stokes
equations and with Petrov-Galerkin formulation”, International Journal for Numerical
Method in Engineering, Vol. 50,2001, p.825-845.
Cochelin B., Damil N., Potier-Ferry M., “The Asymptotic Numerical Method : an efficient
perturbation technique for non-linear structural mechanics”, Revue Européenne des
Eléments Finis, Vol. 3, 1994, p. 281-297.
Cochelin B., Compain C., “An asymptotic numerical method for non-linear transient
dynamics”, Revue Européenne des Eléments Finis, Vol. 9, 2000, p. 113-128.
Crisfield M.A., Non-linear finite element analysis of solids and structures, John Wiley,
Chichester, Vol. 2, 1997.
Dale-Martin E., “Technique for accelerating iterative convergence in numerical integration
with application in transonic aerodynamics”, H. Cabannes éditeur, Lectures Notes in
Physics, Vol. 47, Springer-Verlag, Berlin, p. 123-139, 1976.
Damil N., Potier-Ferry M., “A new method to compute perturbed bifurcation, Application to
the buckling of imperfect elastic structures”, International Journal of Engineering
Sciences, Vol. 28, 1990, p. 943-957.
Damil N., Potier-Ferry M., Najah A., Chari R., Lahmam H., “An iterative method based upon
Padé approximants”, Communications in Numerical Methods in Engineering, Vol. 15,
, p. 701-708.
Fafard M., Henchi K., Gendron G., Ammar S., “Application of an asymptotic method to
transient dynamic problems”, Journal of Sound and Vibration, Vol. 208, 1997, p. 73-99.
Fellah S., Braikat B., Jamal M., Damil N., “An approach based on time expansion, Padé
approximants and Shanks transformation for linear structural dynamic problems”, to
appear in Journal Maghrébin de Physique, 2002.
Fletche C.A.I., Computational techniques for fluid dynamics, Springer-Verlag, Berlin, 1991.
Fornberg B., Whitham G.B., “A numerical and theoretical study of certain nonlinear wave
phenomena”, Philosophical Transactions of the Royal Society of London Ser. A, Vol. 289,
, p. 373-404.
Géradin M., Rixen D., Théorie des vibrations. Application à la dynamique des structures,
Masson, Paris, 1993.
Iskandar L., “New numerical solution of Korteweg-de Vries equation”, Applied Numerical
Mathematics, Vol. 5, 1989, p. 215-221.
Jamal M., Contribution à la résolution de quelques problèmes de la physique non linéaire,
Doctorat d’Etat, Faculté des Sciences Ben M’Sik, Casablanca, Maroc, 1998.
Jamal M., Braikat B., Boutmir S., Damil N., Potier-Ferry M., “A high order implicit algorithm
for solving instationary non-linear problems”, Computational Mechanics, Vol. 28, n° 5,
, p. 375-380.
Mallil E.H., Lahmam H., Damil N., Potier-Ferry M., “An iterative process based on
homotopy and perturbation techniques”, Computer Methods in Applied Mechanics and
Engineering, Vol. 190, 2000, p. 1845-1858.
Mordane S., Chagdali M., Damil N., “Calcul d’un problème à surface libre par une méthode
de perturbation et la méthode des différences finies”, Deuxième Congrès de Mécanique,
Casablanca, Maroc, Vol. I, 1995, p. 471-476.
Nayfeh A.H., Perturbation methods, John Wiley, New York, 1973.
Nayfeh A.H., Mook D.T., Nonlinear Oscillations , John Wiley, New York, 1979.
Nayfeh A.H., Introduction to perturbation techniques, John Wiley, New York, 1981.
Potier-Ferry M., Damil N., Braikat B., Descamps J., Cadou J.M., Cao H.L., Elhage-Hussein
A., “Traitement des fortes non linéarités par la méthode asymptotique numérique”,
Comptes Rendus de l’Académie des Sciences de Paris, t. 324, série I-b, 1997, p. 171-177.
Smith A., Silvester D., “Implicit algorithms and their linearization for transient
incompressible Navier-Stokes equations”, IMA Journal of Numerical Analysis, Vol. 17,
p. 527-545, 1997.
Taha R.T., Ablowitz M.J., “Analytical and numerical aspects of certain non-linear evolution
equations II. Numerical, Nonlinear Schrodinger equation”, Journal of Computational
Physics, Vol. 55, 1984, p. 203-230.
Zienkiewicz O.C., Taylor R.L., The finite element method, Solid and Fluid Mechanics and
non-linearity, 4 ed., Mac Graw-Hill, London, Vol. 2, 1987.