Algorithmes d’intégration temporelle implicites couplés avec des résoluteurs d’ordre élevé

Authors

  • Bouazza Braikat Laboratoire de Calcul Scientifique en Mécanique Faculté des Sciences Ben M’Sik Université Hassan II – Mohammadia, BP 7955 Sidi Othman, Casablanca, Maroc
  • Mohammad Jamal Laboratoire de Calcul Scientifique en Mécanique Faculté des Sciences Ben M’Sik Université Hassan II – Mohammadia, BP 7955 Sidi Othman, Casablanca, Maroc
  • Noureddine Damil Laboratoire de Calcul Scientifique en Mécanique Faculté des Sciences Ben M’Sik Université Hassan II – Mohammadia, BP 7955 Sidi Othman, Casablanca, Maroc
  • Michel Potier-Ferry Laboratoire de Physique et Mécanique des Matériaux, UMR CNRS 7554, Institut Supérieur de Génie Mécanique et Productique Université de Metz, Ile du Saulcy, F-57045 Metz cedex 01, France

Keywords:

non-linear, instationary, implicit algorithms, homotopy, perturbation, Asymptotic Numerical Method, non-linear waves

Abstract

In this paper, we develop some new implicit algorithms for solving instationary non-linear problems. The proposed algorithms are variants of Asymptotic Numerical Methods (ANM). They are obtained by coupling the perturbation method, the homotopy technique and classical time-space discretization procedures. The efficiency of these algorithms is tested on a model for non-linear wave propagation phenomena typified by the Fisher equation. The obtained results prove a computational cost save in comparison with other algorithms for non-linear problems.

Downloads

Download data is not yet available.

References

Allgower E.L., Georg K., Numerical continuation methods. An Introduction, Springer Series

in Computational Mathematics, Springer-Verlag, Berlin, 1990.

Argyris J., Mlejnek H.P., Texts on Computational Mechanics. Dynamics of structures, North

Holland, Amsterdam, 1991.

Bathe K.J., Wilson E.L., Numerical methods in finite element analysis, Prentice-Hall, New

Jersey, 1976.

Bathe K.J., Finite element procedures, Prentice-Hall, New Jersey, 1986.

Berrahma-Chekroun N., Fafard M., Gervais J.J., “Resolution of the transient dynamic

problem with arbitrary load using the asymptotic method”, Journal of Sound and

Vibration, Vol. 243,, 2001, p. 475-501.

Braikat B., Quelques contributions dans l’application de la méthode asymptotique numérique

en mécanique, Doctorat d’Etat, Faculté Sciences Ben M’Sik, Casablanca, Maroc, 2000.

Cadou J.M., Cochelin B., Damil N., Potier-Ferry M., “ANM for instationary Navier-Stokes

equations and with Petrov-Galerkin formulation”, International Journal for Numerical

Method in Engineering, Vol. 50,2001, p.825-845.

Cochelin B., Damil N., Potier-Ferry M., “The Asymptotic Numerical Method : an efficient

perturbation technique for non-linear structural mechanics”, Revue Européenne des

Eléments Finis, Vol. 3, 1994, p. 281-297.

Cochelin B., Compain C., “An asymptotic numerical method for non-linear transient

dynamics”, Revue Européenne des Eléments Finis, Vol. 9, 2000, p. 113-128.

Crisfield M.A., Non-linear finite element analysis of solids and structures, John Wiley,

Chichester, Vol. 2, 1997.

Dale-Martin E., “Technique for accelerating iterative convergence in numerical integration

with application in transonic aerodynamics”, H. Cabannes éditeur, Lectures Notes in

Physics, Vol. 47, Springer-Verlag, Berlin, p. 123-139, 1976.

Damil N., Potier-Ferry M., “A new method to compute perturbed bifurcation, Application to

the buckling of imperfect elastic structures”, International Journal of Engineering

Sciences, Vol. 28, 1990, p. 943-957.

Damil N., Potier-Ferry M., Najah A., Chari R., Lahmam H., “An iterative method based upon

Padé approximants”, Communications in Numerical Methods in Engineering, Vol. 15,

, p. 701-708.

Fafard M., Henchi K., Gendron G., Ammar S., “Application of an asymptotic method to

transient dynamic problems”, Journal of Sound and Vibration, Vol. 208, 1997, p. 73-99.

Fellah S., Braikat B., Jamal M., Damil N., “An approach based on time expansion, Padé

approximants and Shanks transformation for linear structural dynamic problems”, to

appear in Journal Maghrébin de Physique, 2002.

Fletche C.A.I., Computational techniques for fluid dynamics, Springer-Verlag, Berlin, 1991.

Fornberg B., Whitham G.B., “A numerical and theoretical study of certain nonlinear wave

phenomena”, Philosophical Transactions of the Royal Society of London Ser. A, Vol. 289,

, p. 373-404.

Géradin M., Rixen D., Théorie des vibrations. Application à la dynamique des structures,

Masson, Paris, 1993.

Iskandar L., “New numerical solution of Korteweg-de Vries equation”, Applied Numerical

Mathematics, Vol. 5, 1989, p. 215-221.

Jamal M., Contribution à la résolution de quelques problèmes de la physique non linéaire,

Doctorat d’Etat, Faculté des Sciences Ben M’Sik, Casablanca, Maroc, 1998.

Jamal M., Braikat B., Boutmir S., Damil N., Potier-Ferry M., “A high order implicit algorithm

for solving instationary non-linear problems”, Computational Mechanics, Vol. 28, n° 5,

, p. 375-380.

Mallil E.H., Lahmam H., Damil N., Potier-Ferry M., “An iterative process based on

homotopy and perturbation techniques”, Computer Methods in Applied Mechanics and

Engineering, Vol. 190, 2000, p. 1845-1858.

Mordane S., Chagdali M., Damil N., “Calcul d’un problème à surface libre par une méthode

de perturbation et la méthode des différences finies”, Deuxième Congrès de Mécanique,

Casablanca, Maroc, Vol. I, 1995, p. 471-476.

Nayfeh A.H., Perturbation methods, John Wiley, New York, 1973.

Nayfeh A.H., Mook D.T., Nonlinear Oscillations , John Wiley, New York, 1979.

Nayfeh A.H., Introduction to perturbation techniques, John Wiley, New York, 1981.

Potier-Ferry M., Damil N., Braikat B., Descamps J., Cadou J.M., Cao H.L., Elhage-Hussein

A., “Traitement des fortes non linéarités par la méthode asymptotique numérique”,

Comptes Rendus de l’Académie des Sciences de Paris, t. 324, série I-b, 1997, p. 171-177.

Smith A., Silvester D., “Implicit algorithms and their linearization for transient

incompressible Navier-Stokes equations”, IMA Journal of Numerical Analysis, Vol. 17,

p. 527-545, 1997.

Taha R.T., Ablowitz M.J., “Analytical and numerical aspects of certain non-linear evolution

equations II. Numerical, Nonlinear Schrodinger equation”, Journal of Computational

Physics, Vol. 55, 1984, p. 203-230.

Zienkiewicz O.C., Taylor R.L., The finite element method, Solid and Fluid Mechanics and

non-linearity, 4 ed., Mac Graw-Hill, London, Vol. 2, 1987.

Downloads

Published

2002-06-30

How to Cite

Braikat, B. ., Jamal, M. ., Damil, N. ., & Potier-Ferry, M. (2002). Algorithmes d’intégration temporelle implicites couplés avec des résoluteurs d’ordre élevé. European Journal of Computational Mechanics, 11(6), 749–772. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2545

Issue

Section

Original Article

Most read articles by the same author(s)