Adaptative finite element analysis for strongly heterogeneous elasticity problems
Keywords:
a posteriori error estimate, Poisson's equation, linear elasticity, residuals, heterogeneityAbstract
We present a new a posteriori error estimate for strongly heterogeneous elasticity problems. This new approach is based on a simple modification of the well known residual estimate, but with the nice property that it is correctly dimensionalised with respect to the physical data.
Downloads
References
[AIN 93] AINSWORTH M., ODEN 1., <
using element residual methods>>. Numer. Math., vol. 65, p. 23-50, 1993.
[AIN 94] AINSWORTH M., ODEN J ., Wu W., <
in elastostatics >>. Appl. Numer. Math., vol. 14, p. 23-54, 1994.
[AIN 97] AINSWORTH M., ODEN J ., <
>>. Comput. Methods Appl. Mech. Engrg., vol. 142, p. 1-88, 1997.
[ARA 97] ARAYA R., LE TALLEC P., <
equations>>. Rapport de recherche, n° 3279, INRIA, 1997.
[BAB 78] BABUSKA 1., RHEINBOLDT W., <
method>>. Int. J. Numer. Methods Engrg., vol. 12, p. 1597-1615,1978.
[BAB 93] BABUSKA 1., RODRiGUEZ R., <
error indicator based on smoothening techniques>>. Int. J. Numer. Methods Engrg., vol. 36,
p. 539-567, 1993.
[BER 95] BERNARDI C., GIRAULT V., « A local regularization operator for triangular and
quadrilateral finite elements >>. Rapport de recherche, n° 95036, UPMC, Paris, 1995.
[BOR 96] BOROUCHAKI H., LAUG P., <
guide and programmer's manual>>. Rapport de recherche, n° 0194, INRIA, 1996.
[CIA 78] CIARLET P. G., The finite element method for elliptic problems. Editions North-
Holland, Amsterdam, 1978.
[CLE 75] CLEMENT P., << Approximation by finite element functions using local regularization
>>. RAIRO Anal. Numer., vol. 2, p. 77-84, 1975.
[COO 93] COOREVITS P., << Maillage adaptatif anisotrope: application aux problemes de dynamique
>>. These de doctorat, Ecole Norrnale Superieure de Cachan, 1993.
[JOH 92] JOHNSON C., HANSBO P., << Adaptative finite elements methods in computational
mechanics>>. Comput. Methods Appl. Mech. Engrg., vol. 101, p. 143-181,1992.
[LAD 83] LADEZEYE P., LEGUILLON D.,<< Error estimate procedure in the finite element
method and applications>>. SIAM J. Numer. Anal., vol. 20, p. 485-509, 1983.
[LAD 91] LADEVEZE P., PELLE J., ROUGEOT P., <
.for classical finite elements >>. Engrg. Comput., vol. 8, p. 69-80, 1991.
[MUC 95] MOCKER., WHITEMAN J., <
element solutions in finite elasticity>>. Int. J. Numer. Methods Engrg., vol. 38, p. 775-795,
[NEP 97] NEPOMNYASCHIKH S., <>. Personal communication,
[SCO 90] SCOTT L., ZHANG S., <
boundary conditions>>. Math. Camp., vol. 54, n° 190, p. 483-493, 1990.
[SZA 90] SZABO B.,<< The p and h-p versions of the finite element method in solid mechanics>>.
Comput. Methods Appl. Mech. Engrg., vol. 80, p. 185-195,1990.
[VER 96] VERFORTH R., A review of a posteriori error estimation and adaptative meshrefinement
techniques. Editions Wiley and Teubner, Chichester-Stuttgart, 1996.
[ZIE 87] ZIENKIEWICZ 0., ZHU J ., <
practical engineering analysis>>. Int. J. Numer. Methods Engrg., vol. 24, p. 333-357, 1987.