Modelisation numerique du contact reil-trepan

Authors

  • Maxime Kaiss lUST/, Av. Escadrille Normandie-Niemen, 13397 Marseille Cedex 20
  • Patrick Le Tallec INRIA Rocquencoun, Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex

Keywords:

numerical analysis, contact, nonlinear elasticity, finite element, continuation's method, Newton's method, trepanation

Abstract

This paper deals with the numerical modelling of the trepanation of a human eye. Our purpose here is to predict the final shape of the hole. Two problems are treated in large deformations : the deformation of eye under the effect of contact, of the aspiration pressure and of the reaction of supporting cushion, and the prediction of the time evolution of the incision. The contact contraints are treated by a penalty method. The problem of the incision is a problem of evolution which is discretized by as Euler scheme. The progression of the blade requires a new mesh and new numerotation of the nodes. Finally, the resulting nonlinear problems are solved by a continuation algorithm based on the Newton's method.

 

Downloads

Download data is not yet available.

References

[Cia 78 1 Ciarlet P.G. (1978) . . The finite element method for elliptic problems

(North-Holland, Amsterdam, New-York).

[Cia 88 1 Ciarlet P.G. (1988). Mathematical Elasticity (North-Holland, Amsterdam,

New-York).

[Han 89 1 Hanna K., Jouve F., Waring G. and Ciarlet P. (1989). Computer Simulation

of Arcuate and Radial Incisions involving the corneo-sclerallimbus.

Eye, 3, pp 227-239.

[Han 91 1 Hanna K., Jouve F. and Ciarlet P. (1991). Computer Simulation of arcuate

Keratotomy for Astigmatism. in Keratotomy for Myopia and Astigmatism,

G. Waring M.D. (ed.), Mosby Co., St Louis MO, pp 1249-1280

[Jou 93 1 Jouve F. (1993). Modelisation de l'reil en elasticite non lineaire. Masson,

Paris.

(l(el 83 ) Keller 1-l.B. (1983). The bordering algorithm and path following near

singular points of higher nullity, SIAM J. Sci. Stat. Comput. 4, 573-582.

(LeT 84 ) Le Tallec P. and Vidrascu M. (1984). Une methode numerique pour les

problemes d'equilibre de corps hyperelastiques compressibles en grandes

deformations, Numer. Math. 43, 199-224.

(LeT 93 ) Le Tallec P., Rahier C., Kaiss A. (1993). Three dimensional incompressible

viscoelasticity in large strains: Formulation and numerical approximation.

Computer Methods in Applied Mechanics and Engineering. Vol

, pp 233-258.

(LeT 94 ) Le Tallec P. (1994). Numerical Methods for Nonlinear Three-dimensional

elasticity. to appear in the Handbook of Numerical Analysis, P.G. Ciarlet

et J .L. Lions eds., North-Holland.

(Ode 88 ) Oden J.T. and Kikuchi N. (1988). Contact Problems in Elasticity: a

Study of Variational Inequalities and Finite Element Methods (SIAM,

Philadelphia).

(Ogd 84 ) Ogden R.W. (1984). Nonlinear Elastic Deformations. (Ellis Horwood,

Chichester and J. Wiley).

(Zie 71 J Zienkiewicz 0. (1971). The Finite Element Method in Engineering Science

(McGraw-Hill, New-York, Toronto, London).

Downloads

Published

1996-03-31

How to Cite

Kaiss, M. ., & Tallec, P. L. . (1996). Modelisation numerique du contact reil-trepan. European Journal of Computational Mechanics, 5(3), 375–408. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3525

Issue

Section

Original Article