A quasi-Newton interior point algorithm applied to constrained optimum design in computational fluid dynamics

Authors

  • Jose Herskovits COPPE, Federal University of Rio de Janeiro Caixa Posta/68503, 21945-970 Rio de Janeiro, Bresil
  • Emmanuel Laporte INRIA Rocquencourt, BP 105, 78153 Le Chesnay cedex
  • Patrick Le Tallec INRIA Rocquencourt, BP 105, 78153 Le Chesnay cedex
  • Gines Santos COPPE, Federal University of Rio de Janeiro Caixa Posta/68503, 21945-970 Rio de Janeiro, Bresil

Keywords:

interior points, feasible sets, quasi-Newton, dejlexion, line search, adjoint state, CFD

Abstract

This paper introduces and describes a second order interior point method well adapted to. constrained shape optimal design in engineering. The· theoritical background is presented and detailed implementation procedures are given in the case of nonlinear inequality constraints. The algorithm is then applied to two significative shape optimum problems in Computational Fluid dynamics.

 

Downloads

Download data is not yet available.

References

AUATT, S. S., Nonlinear Programming Algorithms for Elastic Contact Problems,

(in Portuguese), COPPE, Federal University of Rio de Janeiro, Brazil, MS

Thesis, 1993.

BARON, F. J. AND PIRONNEAU, 0., Multidisciplinary Optimal Design of a

Wing Profile, Proceedings of STRUCTURAL OPTIMIZATION 93, Rio de

Janeiro, Edited by J. Herskovits, 8/1993.

BARON, F. J. Constrained Shape Optimization of Coupled Problems with Electromagnetic

Waves and Fluid Mechanics, (in Spanish), University of Malaga,

Spain, PhD Thesis, 1994.

BARON, F. J., DUFF A, G., CARRERE, F. AND LE TALLEC, P., Optimisation de

forrne en aerodynamique, (in French), CHOCS, Revue scientifique et technique

de la Direction des Applications Militaires du CEA, France, 1994.

GILBERT J.-C., LEVEY G. AND MASSE J., La differentiation automatique de

fonctions representees par des programmes, INRIA Research Report RR1557,

HERSKOVITS, J ., A Two-Stage Feasible Directions Algorithm for Non-Linear

Constrained Optimization, Research Report No. 103, INRIA, BP 105,78153 Le

Chesnay CEDEX, France, 1982.

HERSKOVITS, J ., A Two-Stage Feasible Directions Algorithm Including Variable

Metric Techniques for Nonlinear Optimization, Research Report nO 118,

INRIA, BP 105, 78153 Le Chesnay CEDEX, France, 1982.

pour

HERSKOVITS, J., A Two-Stage Feasible Directions Algorithm for Nonlinear

Constrained Optimization , Mathematical Programming, Vol. 36, pp. 19-38,

HERSKOVITS, J. AND COELHO, C.A.B. An Interior Point Algorithm for Structural

Optimization Problems , in Computer Aided Optimum Design of Structures:

Recent Advances, edited by C.A. Brevia and S.Hemandez, Computational

Mechanics Publications, Springer-Verlag, June 1989.

HERSKOVITS, J .,An Interior Point Technique for Nonlinear Optimization, Research

Report No. 1808, INRIA, BP 105, 78153 Le Chesnay CEDEX, France,

HERSKOVITS, J .,An Interior Point Technique for Nonlinear Optimization, Research

Report No. 1808, INRIA, BP 105, 78153 Le Chesnay CEDEX, France,

HERSKOVITS, J ., A View on Nonlinear Optimization, Advances in Structural

Optimization, Edited by J. Herskovits, Kluwer Academic Publishers, Dordrecht,

pp 71-117, 1995.

HIRIART-URRUTY, J. B. AND LEMARECHAL, C. Convex analysis and Minimization

Algorithms, Springer- Verlag, Berlin, Heildelberg, 1993.

MOHAMMADI B., Fluid dynamics computation with NSC2KE: an user-guide:

release 1.0., INRIA Technical ReportRT0164, 1994.

POWELL M. J. D., Variable Metric Methods for Constrained Optimization, in

Mathematical Programming - The State of the Art, Edited by A. Bachem, M.

Grotschet and B. Korte, Springer-Verlag, Berlin, 1983.

SANTOS, G., Feasible Directions Interior Point Algorithms for Engineering Optimization

, (in Portuguese), DSc. Dissertation, COPPE - Federal University of

Rio de Janeiro, Mechanical Engineering Program, Caixa Posta168503, 21945-

, Rio de Janeiro, Brazil, 1996.

TITS, A.L., ZHOU, J.L. A Simple, Quadratically Convergent Interior Point Algorithm

for Linear Programming and Convex Quadratic Programming, Large

Scale Optimization: State of the Art, W.W. Hager, D.W. Hearn and P.M. Pardalos

Eds., Kluwer Academic Publishers B.V., 1993.

VAUTIER, 1., SALAUN, M. AND HERSKOVITS, J., Application of an Interior

Point Algorithm to the Modeling of Unilateral Contact Between Spot-Welded

Shells, Proceedings of STRUCTURAL OPTIMIZATION 93, Rio de Janeiro,

Edited by J. Herskovits, 8!1993.

ZOUAIN, N.A., HERSKOVITS J., BORGES, L.A. AND FEIJOO, R. An Iterative

Algorithm for Limit Analysis with Nonlinear Yield Functions, International

Journal on Solids and Structures, Vol30,No lO,pp 1397-1417, Gt. Britain, 1993.

Downloads

Published

1996-06-01

How to Cite

Herskovits, J. ., Laporte, E. ., Tallec, P. L. ., & Santos, G. . (1996). A quasi-Newton interior point algorithm applied to constrained optimum design in computational fluid dynamics. European Journal of Computational Mechanics, 5(5-6), 595–617. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3487

Issue

Section

Original Article