Une methode d'identification inverse des parametres materiels pour les comportements non-lineaires
Keywords:
nonlinear behaviour, material parameters, inverse identification, optimization, finite elementsAbstract
The characterization of rheological behaviour of materials in nonlinear range is based on experimental tests, characterized by non-homogeneous stress and strain states, making the direct identification very difficult to perform. In this paper, an inverse identification method is proposed to avoid the problems raised by the interpretation of the experimental tests and to determine more accurately material parameters. The algorithm developed consists of an optimization method and a finite element method. This algorithm is first tested by the determination of material parameters in the case of the nonlinear elastic behaviour of polymers, then applied to the inverse identification of viscoplastic parameters of an aluminium alloy.
Downloads
References
[BEC 85] BECK J.V., BLACKWELL B., St. CLAIR C.R., Jr, Inverse heat conduction lll-posed
problems. John Wiley & Sons, New York, (1985).
[BUI 93] BUI H.D., Introduction aux problemes inverses en mecanique des materiaux,
Eyrolles, Paris, (1993).
[BAR 74] BARD Y., Nonlinear Parameter Estimation, Academic Press, New York, (1974).
[BAT 82] BATIIE K.J., Finite Element Procedures in Engineering Analysis, Ed. Prentice Hall
Int., New York, (1982).
[CAR 61] CARROLL C.W., ''The created response surface technique for optimizing nonlinear
restrained systems", Operations Res., 9, 169-184, (1961).
[GEL 86] GEUN J.C., "Application of implicit methods for the analysis of damage with
temperature effects in large strain plasticity problems", Numerical Methods for Nonlinear
Problems, Vol. 3, Pineridge Press, Swansea, 494, (1986).
[GEL 93a] GEUN J.C., GHOUATI 0., RAYNAUD G.M., TREPIED L., "Numerical and
experimental simulation of hot rolling of aluminium alloys". In lArge Plastic Deformations, Ed.
by C. Teodosiu imd F.Sidoroff, A.A. Balkema, 405-414. (1993).
[GEL 93b] GEUN J.C., GHOUATI 0., SHAHAN! R., ''Identification and modelling of
constitutive equations for hot rolling of aluminium alloys from the plane strain compression
test", In Modelling of Metal Rolling Processes, The Institute of Materials, London, 239-255.
(1993).
[GEL 94a] GEUN J.C., GHOUATI 0., SHAHAN! R., "Apports de la simulation num6rique
pour !'identification du comportement rhwlogique des alliages d'aluminium par essai de
bipoin~nnement'', J. Phys. ill, France, 4, pp.685-706, (1994).
[GEL 94b] GEUN J.C., GHOUATI 0., SHAHAN! R., "Modelling the plane strain
compression test to obtain constitutive equations of aluminium alloys", Int. J. Mech. Sci., 36,
-796, (1994).
[GHO 94] GHOUATI 0., ''Identification et modelisation numerique directe et inverse du
comportement viscoplastique des alliages d' aluminium", These de doctorat, Universite de
Franche-Comte, Juillet 1994.
[KOC 75] KOCKS U.F., "Constitutive Relations for Slip", in A.S. Argon (eel.), Constitutive
Equations in Plasticity, Ml.T. Press., Cambridge, 81, (1975).
[LEV 44] LEVENBERG K., "A method for the solution of certain nonlinear problems in least
squares", Quart. Appl. Math., 2, pp.164-168, (1944).
[Mah 94] MAHNKEN R., and STEIN E., ''The identification of parameters for visco-plastic
models via fmite-element methods and gradient methods". ModeUing Simul. Mater. Sci: Eng.,
, 597-616. (1994).
[MAR 63] MARQUARDT D.W., "An algorithm for least squares estimation of non-linear
parameters", J. Soc. Indust. Appl. Math., 11,431-440, (1963).
[SCH 92] SCHNUR D.S. and ZABARAS N., "An inverse method for determining elastic
material properties and material interface", Int. J.for Num. Meth. in Eng., Vol.33, 2039-2057,
(1992).
[SIM 92] SIMO J.C., "Algorithms for static and dynamic multiplicative plasticity that preserve
the classical return mapping schemes of the inf"mitesimal theory", Comput. Meth. Appl. Mech.
Eng., 99, pp 61-112. (1992).
[TAR 87] TARANTOLA A., Inverse Problem Theory, Elsevier, (1987).
[VID 92] VIDAL C.A., LEE H.S., HABER R.B. "The consistent tangent operator for design
sensitivity analysis of history-dependent response". Camp. Syst. in Eng., 2, 509-523. (1991).
[ZIE 89] ZIENKIEWICZ O.C. and TAYLOR R.L., The Finite Element Method, Fourth
Edition, Vol.l, Basic Fonnulation and Linear Problems, Me Graw Hill Book company, (1989).