Element fini de coque a trois nreuds pour le calcul des structures minces en grandes deformations
Keywords:
finite element, shells, triangles, geometrical non-linearities, Ahmad kinematics, material covariant frame, mixte inJerpolation, sheet metal formingAbstract
A co three node shell finite element well suited to calculations where geometrical non-linearities are taken into account is proposed. The element is based on isoparametric continuum based kinematics and shear locking is avoided by using an inJerpolation of the tranverse shear strain components. A materia/frame related to the element side is considered to define the nodal values of tranverse shear strains. The modifications concern the linear and non-linear parts of the strains. They are taken into accounJ at any level of the Newton scheme and in particular to calculate the initial stress matrix. The element works using a single set of Gauss points along the normal at the center to be very efficient from the computational point of view. A set of examples show a correct efficiency in linear calculations and very good performances in non-linear tests. A numerical simulation of sheet metal forming is described and the element appears to be well adapted for these types of calculations.
Downloads
References
[AHM 71) AHMAD S., IRONS BM., ZIENKIEWIECZ O.C., 'Analysis of thick and thin
shell structures by curved finite elements', lnt J. Numer. Methods Eng., 2, 419-451
(1971).
[BAT 80] BATOZ J.L., BATHE K.J. , HO L.O., 'A study of three node triangular plate
bending elements', lnt J. Numer. Methods Eng., 15, 1771-1812 (1980).
[BAT 80] BATOZ J.L. , 'A explicit formulation for an efficient triangular plate bending
element', /nt J. Numer. Methods Eng., 18, 1077-1089 (1980).
[BAT 82) BATHE K.J., Finite Element Procedures in Engineering Analysis, Prentice Hall
(1982).
[BAT 89) BATOZ J.L., LARDEUR P., 'A discret shear triangular nine d.o.f element for the
analysis of thick to very thin plates', /nt J. Numer. Methods eng., 28, 533-560 (1989).
[BEL 85] BELYTSCHO T., STOLARSKI H., LIU W.K., 'Stress projection for membrane
and shear locking in shell finite elements', Comp. Methods Appl. Mech. Eng., 51, 221-
(1985).
[BER 86] BERNADOU M., 'Some finite element approximations of thin shell problems',
In Hughes T.J.R. and Hinton E. (Ed) :Finite Element Methods for Plates and Shell
Structures. 1, 62-85 Pineridge Press (1986).
[BOI 91a] BOISSE P., DANIEL J.L., GELIN J.C.: A combined membrane and bending
model for the analysis of large elastic-plastic deformations of thin shells
Proc of the Int. Seminar Mecamat'91. Ed by C. Teodosiu, A.A Balkema (1991).
[BOI 91b] BOISSE P., DANIEL J.L., GELIN J.C., 'Sheet metal forming using three and
four node shell elements', Proceedings of Int Conf "FE-Simulation of 3D sheet metal
forming process in automotive industries" , VDI Report 894, 109-122 (1991).
[BOI 92a] BOISSE P., DANIEL J.L., GELIN J.C., 'A simple isoparametric three node shell
finite element', Computers and Structures, 44, n°6, 1263-1273 (1992).
[BOI 92b] BOISSE P., DANIEL J.L., GELIN J.C., 'A new class of three nodes and four
nodes shell elements for the finite inelastic strain analysis. Application in sheet metal
forming', In New Advances in Computational Structural Mechanics. Edited by P. Ladeveze
and O.C. Zienkiewicz. Elsevier, 303-317 (1992).
[BOI 93] BOISSE P., BOUBAKAR M.L., GELIN J.C., 'Modelisation numerique du
comportement elasto-plastique anisotrope dans des structures coques en grandes
perturbations. Application a l'emboutissage.', Actes du Colloque National en Calcul des
Structures, Giens (1993).
[DAN 92] DANIEL J.C., 'Contribution a Ia simulation numerique de l'emboutissage des
toles minces par de elements finis de coque minces' These de Doctorat de l'Universire de
Franche-Comte. (1992).
[DES 89] DESALVO G.J., GORMAN R.W., 'ANSYS engineering analysis system User's
manual', Swanson Analysis System (1989).
[DVO 84] DVORKIN E.N. AND BATHE KJ., 'A Continuum Mechanics based Four node
Shell Element for General Non-linear Analysis', Engineering Computations, 1, 77-78
(1984).
[HUG 78] HUGHES T.J.R., COHEN M. AND HAROUN M., 'Reduced and selective
integration technics in finite element analysis of plates', J. Nucl. Eng. Des., 46, 203-
(1978).
[HUG 80] HUGHES T.J.R., LIU W.K., 'Non linear finite element analysis of shells. Part
Three dimensional shells', Comp. Methods Appl. Mech. Eng., 26, 331-362 (1980).
[HUG 81] HUGHES T.J.R. AND TEZDUY AR T.E., 'Finite Element Based upon Mindlin
Plate Theory with Particular Reference to the four node bilinear Isoparametric Element ',
J. Applied Mechanics , 48, 587.596 (1981).
[HUG 87] HUGHES T.R., The finite element method. Linear Static and Dynamic finite
element Analysis, Prentice Hall. ( 1987).
[HOR 77] HORRRIGMOE G. , 'Finite element instability analysis of free form shells',
Report 77-2 Division of structural Mechanics, Norwegian Institute of Technology.
University of Trondheirn. Norway (1977).
[IRO 65] IRONS B. AND DRAPER KJ., 'Inadequacy of nodal connections in a stiffness
solution of plate bending', AIAA Journal , 3, 961-977 (1965).
[LEE 1990] LEE J.K., WAGONER R.H., NAKAMACHI E. , ' A benchmark test for sheet
forming analysis', Report n° ERC/NSM-5-90-22, National Science Foundation,
Engineering Research Center for Net Shape Manufacturing, The Ohio State University
(1990).
[MAC 82] MACNEAL R.H.: Derivation of element stiffness matrices by assumed strain
distributions. J. Nucl. Eng. Des. 70, pp 3-12 (1982).
[MAC 86] MACNEAL R.H., 'The evolution of low order plate and shell elements in MCS
Nastran', In Hughes T J.R. and Hinton E. (Ed) : Finite Element Methods for Plates and
Shell Structures, 1, 85-127 Pineridge Press (1986).
[Mal 78] MALKUS D.S., HUGHES T.J.R., 'Mixed finite element methods. Reduced and
selective integration techniques. A unification of concepts', Comp. Methods Appl.
Mech. Eng., 15, 63-81 (1978).
[PIN 91] PINSKY P.M., JASTI R.V., 'On use of Lagrange multiplier compatible modes for
controlling accuracy and stability of mixed shell finite elements.', Comp. Methods Appl.
Mech. Eng., 85, 151-182 (1991).
[PRA 69] PRATO C., 'Shell finite element via Reissner's principle', Int. J. Solids Struct.,
, 1119-1133 (1969).
[SCH 1991] SCHWEIZERHOF K., HALLQUIST J.O. 'Explicit integration schemes and
contact formulations for sheet metal forming' Proceedings of lnt Conf "FE-Simulation of
D sheet metal forming process in automotive industries" , VDI report 894, 405-440
(1991 ).
[SIM 86] SIMO J.C., HUGHES T.J.R., 'On variational Foundations of Assumed Strain
Methods', J. of Applied Mechanics, 53-1, 51-54 (1986).
[SIM 89] SIMO J.C., FOX D.D.,RIFAI M.S., 'On a stress resultant geometrically exact
shell model. Part 2: The linear theory; Computational aspects' Comp. Methods Appl.
Mech. Eng., 73, 52-92 (1989).
[ST A 85] STANLEY G., 'Continuum based shell elements', Stanford University Ph D
Thesis (1985).
[STA 87] STANLEY G., PARK K.C., HUGHES T.R.J: Continuum based resultant shell
elements. In Hughes T.J.R. and Hinton E. (Ed) : Finite Element Methods for Plates and
Shell Structures. Vol 1, pp 1-45 Pineridge Press (1986).
[STO 89] STOLARSKI H.K. AND CIDANG M.Y .M., 'On a definition of the assumed shear
strains in formulation of the cO plate elements', Eur. J. Mech., A/Solids, 8, n° 1, 53-72
(1989).
[SUM 83] SUMIHARA K., 'Thin shell and new invariant elements by hybrid stress
method' Doctorat Thesis, MIT Cambridge (1983).
[TIM 59] TIMOSHENKO S., Theory of plates and shells, McGraw Hill (1959).
[WAY 38] WAY S ., 'Uniformaly loaded, clamped, rectangular plates with large
deformation', Proc 5th International Congress of Applied Mechanics, Cambridge, MA
(1938).
[ZIE 90] ZIENKIEWICZ O.C. , TAYLOR R.L. , Papadopoulos P., Onate E., 'Plate bending
elements with discrete constraints: new triangular elements', Computers and Structures,
n°4, 505-522 (1990).
[ZIE 71] ZIENKIEWICZ O.C., Taylor R.L. and Too J.M., 'Reduced integration technics
in general analysis of plates and shells', lnt J. Numer. Methods Eng., 3, 275-290 (1971