Une methode de decomposition de domaines multifrontale multiniveaux

Authors

  • Yves Escaig INSA de Rouen, Institut de mecanique BP 08, 76131 Mont-Saint-Aignan cedex
  • Michel Vayssade Universite de technologie de Compiegne BP 649, 60206 Compiegne cedex
  • Gilbert Touzot INSA de Rouen, Institut de mecanique BP 08, 76131 Mont-Saint-Aignan cedex

Keywords:

finite element method, domain decomposition, multilevel decompisition, multifrontal method

Abstract

The developpement of multiprocessor computers has led to a new interest in domain decomposition methods. The goal of this article is to present a multilevel domain decomposition algorithm for the finite element method using a direct solver on the interface problems at each level. In order to reduce the cost of building the inverse of the rigidity matrices of each subdomain, a multifrontal method is used. After a brief description of the Schur complement method and its classical implementation, the multifrontal method is presented in detail. A comparison of theoretical number of operations and measured execution times between these two implementations is given. In the second part of the article, the influence of two parameters is studied : the number of subdomains and the number of decomposition levels. Finally, a comparison between the multifrontal domain decomposition method and a method without decomposition is provided.

 

Downloads

Download data is not yet available.

References

[Debruyne 83] G. DEBRUYNE, Y. WADIER, "Barrage de Garrabet: un calcul

tridimensionnel par elements finis", note E.D.F. Hi/4374-07

[Duff] I. Duff, A. ERISMANN, J. REID, Direct methods for sparse matrices, Clarandon Press

Oxford

[Escaig 92] Y. ESCAIG, Compte rendu de Ia rencontre avec M. DELCEY de

FRAMASOFf +CSI a Lyon, compte rendu interne E.D.F. n°866-07

[Escaig 93] Y. ESCAIG, M. VAYSSADE, G. TOUZOT, "Automatisation de Ia decomposition

de domaines dans un logiciel de calcul par elements finis", Actes du Colloque National

en calcul des Structures, Vol. 2, pp 847-873, Hermes (1993)

[Escaig 94] Y. ESCAIG, M. VAYSSADE, G. TOUZOT, "Parallelization of a multilevel domain

decomposition", a paraitre dans Computing Systems in Engineering

[Imbert 79] J.F. IMBERT, Analyse des structures par elements finis, Ecole Nationale

Superieure de l'Aeronautique et de l'espace, Cep(ldues Editions

[Irons 69] B.M. IRONS "A frontal solution program for finite element analysis", Int. Jour.

Num. Meth. Eng., Vol 2, pp 5-32 (1970)

[Keunings 92] R. KEUNINGS, 0. ZONZ, R. AGGARWAL "Parallel algorithms in

computational Rheology", in Xlth International Congress on Rheology, Brussels, Ed

P. Moldenaers, R. Keunings, Elsevier, 274-276 (1992)

[Lesoinne 91] M. LESOINNE, C. FARHAT, M. GERADIN, "ParallelNector improvements of

the frontal method", Int. J. Numer. Meth. Engrg., Vol 32, pp1267-1282 (1991)

[Le Tallec 90] P. LE TALLEC, Y-H. De ROECK, M. VJDRASCU "Domain decomposition

methods for large linearly elliptic three dimensional problems", Rapport de recherche

de l'INRIA n°1182 (1990)

[Roge 93] C. ROGE, F-X Roux "Methodes de calcul des structures composites par sousdomaines

sur calculateurs MIMD", Actes du Colloque National en calcul des Structures,

Vol. 2, pp 920-927, Hermes (1993)

[Roux 89] F-X. Roux "Methode de decomposition de domaine a !'aide de multiplicateurs

de Lagrange et application a Ia resolution en parallele des equations de l'elasticite

lineaire", These de l'Universite de Paris 6 (1989)

[Sloan 89] S. SLOAN, "A Fortran program for profile and wavefront reduction", Int. J.

Numer. Meth. Engrg., Vol 28, pp 2651-2679 (1989)

[Schrem 89] E. SCHREM Handbook for linear static analysis, INTES Publication UM 404

Rev C (1989)

Downloads

Published

1994-03-26

How to Cite

Escaig, Y. ., Vayssade, M. ., & Touzot, G. . (1994). Une methode de decomposition de domaines multifrontale multiniveaux. European Journal of Computational Mechanics, 3(3), 311–337. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3609

Issue

Section

Original Article