Integration numerique de lois de comportement elastoplastique
Keywords:
finite elements, stepsize conlrol, Runge-Kutta, consistenl modulusAbstract
This paper presents some new integration algorithms for integration of elastoplastic constitutive laws. These algorithms are designed for use in finite element codes. In all methods presented the error is controlled by adjusting the size of each substep automatically. An original technique of adjusting the stepsize and extending the solution in case of using a fourth order Runge-Kutta method is proposed. Neither of the algorithms requires any form of stress correction to avoid drift from the yield surface. To preserve the quadratic convergence of the iterative Newton-Raphson schemes, an expression of tangent moduli consistent with the integration algorithm is developed. The proposed methods are compared with other inlegration algorithms and are tested with several examples.
Downloads
References
[BAG 93) Baghdadi A. H., Modelisation en grandes deformations des solides et des solsapplication
aux fondations, These de Doctor at, Div. Modeles Numeriques en
Mecanique, Universite de Technologic de Compiegne, 1993.
[BON 91) Bonnelli S., Debordes 0. et Degoutte G., Integration numerique de lois de
comportement elastoplastiques. Multimecanismes pour Jes Geomateriaux, 3eme
Symposium International sur Ia plasticite et ses applications, Grenoble. Aout 1991.
[BRA 86] Braude! H. J., Abouaf M. and Chenot J.L., An implicit incrementally objective
formulation for the solution of Elastoplastic problems at finite strain by the F.E.M.,
Computers and Structures, vol 24, 6, pp 825-843, 1986.
[BUT 87] Butcher J.C., The numerical analysis of ordinary differential equations.
Wiley.J987.
[CRI 91) Crisfield M.A., Non-linear Finite Element Analysis of Solids and Structures.
Volume 1. Willey. 1991.
[CRO 84) Crouzeix M. et Mignot A.L., Analyse numerique des equations differentielles.
Masson.1984.
[DOR 80] Dormand 1. R. and Prince P.J., A family of embedded Runge-Kutta formulae, J.
Comp. Math.,6,19-20,1980.
[ORO 85] Drobysz S., integration numerique de lois de comportement et construction
automatique de problemes tests en grandes transformations elastoplastiques, These,
Universite de Nantes 1985.
[ELM 89] El Mouatassim M., Modelisation en grandes transformations des so/ides
massifs par elements finis, These de Doctoral, Div. Modeles Numeriques en
Mecanique, Universite de Technologic de Compiegne, Novembre 1989.
[GEA 71] Gear C.W., Numerical Initial Value Problems in Ordinary Differential
Equations. Englewood Cliffs N. J., Printice Hall. 1971.
[PIN 90] Pinto Y., Contact et frottement en Grandes Deformations Plastiques,
Application au serre-flan en emboutissage, These de Doctoral, Universite de Province
(Aix-Marseille I ), Decembre 1990.
[POL 89) Polat M.U. and Dokainsh M.A., An automatic subincrementation scheme for
accurate integration of elasto-plastic constitutive relations. Computers & Structures,
vol 31, 3, pp 339-347, 1989.
[PRE 86) Press W.H., Flannery B. P., Teukolsky S. A. and Vetterling W. T., Numerical
Recipes, The Art of Scientific Computing. Cambridge University Press. 1986.
[SIM 85] Sima J. C. and Taylor R. L., Consistant tangent Operators for rate-independent
Elastoplasticity. Camp. Meth. Appl. Mech. Eng.,48,101-118.1984.
[SIM 86] Sima J.C. and Taylor R. L., A return Mapping Algorithm for plane stress
Elastoplasticity. inter. j. num. methods. eng., 22, 649-670, 1986.
[SLO 87] Sloan S.W., Substepping schemas for the numerical integration of
elastoplastic stress-strain relations. inter. j. num. methods. eng., 24, 893-911.
[STO 80] Stoer J. and Bulirsch R., Introduction to Numerical Analysis. New York.
Springer Verlag.1980.