Some Aspects of Artificial Intelligence Development Strategy for Mobile Technologies
DOI:
https://doi.org/10.13052/jmm1550-4646.2031Keywords:
strategy, artificial intelligence, neural networks, large language models, Internet of Things, cloud computing, fog computing, quantum computingAbstract
The article addresses hardware-software and other key aspects of the artificial intelligence development strategy for mobile technologies. The proposed components of the strategy include a series of approaches to address issues related to the development and deployment of large language models on mobile devices, as well as suggestions for improving connectivity, memory management, and data security.
Downloads
References
Y. Kondratenko, A. Shevchenko, Y. Zhukov, M. Klymenko, V. Slyusar, G. Kondratenko, O. Striuk, ‘Analysis of the Priorities and Perspectives in Artificial Intelligence Implementation’, 13th International IEEE Conference “Dependable Systems, Services and Technologies” (DESSERT’2023), Greece, Athens, October 13–15, 2023.
Y. Kondratenko, G. Kondratenko, A. Shevchenko, V. Slyusar, Y. Zhukov, M. Vakulenko, ‘Towards Implementing the Strategy of Artificial Intelligence Development: Ukraine Peculiarities’, CEUR Workshop Proceedings, vol. 3513, 2023, pp. 106–117, https://ceur-ws.org/Vol-3513/paper09.pdf.
United Nations Activities on Artificial Intelligence (AI). 2021, https://www.itu.int/dms_pub/itu-s/opb/gen/S-GEN-UNACT-2021-PDF-E.pdf.
United Nations Activities on Artificial Intelligence (AI). 2022, https://www.itu.int/dms_pub/itu-s/opb/gen/S-GEN-UNACT-2022-PDF-E.pdf.
Technical Report “FGAI4AD-01 – Automated driving safety data protocol – Specification”, Focus Group on AI for autonomous and assisted driving (FG-AI4AD), 2022, 22 p., https://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-AI4AD-2022-PDF-E.pdf.
Technical Report “FGAI4AD-02 - Automated driving safety data protocol – Ethical and legal considerations of continual monitoring”, Focus Group on AI for autonomous and assisted driving (FG-AI4AD), 2021, 52 p., https://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-AI4AD-2021-02-PDF-E.pdf.
Technical Report “FG-AI4AD-03 – Automated driving safety data protocol – Practical demonstrators”, Focus Group on AI for autonomous and assisted driving (FG-AI4AD), 2022, 90 p., https://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-AI4AD-2022-01-PDF-E.pdf.
GPT-4. Technical Report by OpenAI, 27 March 2023, URL: https://arxiv.org/pdf/2303.08774v3.pdf.
H. Liu, C. Li, Q. Wu, Y.J. Lee, ‘Visual Instruction Tuning’, 2023, 19 p., https://arxiv.org/abs/2304.08485.
Z. Peng, W. Wang, L. Dong, Y. Hao, S. Huang, S. Ma, and F. Wei, ‘Kosmos-2: Grounding Multimodal Large Language Models to the World’, 2023, 20 p., https://arxiv.org/pdf/2306.14824.pdf.
V. Slyusar, M. Protsenko, A. Chernukha, V. Melkin, O. Petrova, M. Kravtsov, S. Velma, N. Kosenko, O. Sydorenko, M. Sobol, ‘Improving a neural network model for semantic segmentation of images of monitored objects in aerial photographs’, Eastern-European Journal of Enterprise Technologies, vol. 2, no. 6 (114), 2021, pp. 86–95, doi: 10.15587/1729- 4061.2021.248390.
V. Slyusar, et al., ‘Improvement of the object recognition model on aerophotos using deep convolutional neural network’, East. Eur. J. Enterp. Technol., vol. 5, no. 2 (113), 2021, pp. 6–21.
V. Slyusar, M. Protsenko, A. Chernukha, V. Melkin, O. Biloborodov, M. Samoilenko, O. Kravchenko, G. Kalinichenko, A. Rohovyi, M. Soloshchuk, ‘Improvement of the model for detecting objects on aerial photos and video in unmanned aerial systems’, Eastern-European Journal of Enterprise Technologies, vol. 1, no. 9 (115), 2022, pp. 24–34, doi: 10.15587/1729-4061.2022.252876.
A. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. Singh Chaplot, D. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. Renard Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang, T. Lacroix, W. E. Sayed, ‘Mistral 7B’, 2023, 9 p., https://arxiv.org/pdf/2310.06825.pdf.
E. Beeching, C. Fourrier, N. Habib, S. Han, N. Lambert, N. Rajani, O. Sanseviero, L. Tunstall, T. Wolf, ‘Open LLM Leaderboard’, Hugging Face, 2023, https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.
E. Hartford, ‘Dolphin-2.1-mistral-7b’, https://huggingface.co/ehartford/dolphin-2.1-mistral-7b.
Mistral-7B-OpenOrca, https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca.
A. Ahmadian, S. Dash, H. Chen, B. Venkitesh, S. Gou, P. Blunsom, A. Üstün, S. Hooker, ‘Intriguing Properties of Quantization at Scale’, 2023, 32 p., https://arxiv.org/abs/2305.19268.
B. Cornet, H. Fang, H. Wang, ‘Overview of Quantum Technologies, Standards, and Their Applications in Mobile Devices’, GetMobile: Mobile Computing and Communications, Volume 24, Issue 4, December 2020, pp. 5–9, doi: 10.1145/3457356.3457358.
A new era of possibility with on-device AI, Qualcomm, 2023, https://www.qualcomm.com/products/technology/artificial-intelligence.
V. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch, M. Shoeybi, B. Catanzaro, ‘Reducing Activation Recomputation in Large Transformer Models’, 17 p., https://arxiv.org/pdf/2205.05198.pdf.
S. Gunjal, ‘Understanding VRAM Requirements to Train/inference with Large Language Models (LLMs)’, https://medium.com/@siddheshgunjal82/understanding-vram-requirements-to-train-inference-with-large-language-models-llms-a3edd0f09d9f.
P. Dwivedi, ‘Mixtral 8x7 – A better and cheaper alternative to ChatGPT’, https://generativeai.pub/mixtral-8x7-a-better-and-cheaper-alternative-to-chatgpt-5c251b2e714d 3/12.
G. Bao, Z. Ou, Y. Zhang, ‘GEMINI: Controlling The Sentence-Level Summary Style in Abstractive Text Summarization’, 9 December 2023, https://arxiv.org/pdf/2304.03548.pdf.
Gemini: A Family of Highly Capable Multimodal Models, Gemini Team, Google, https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf.
Hafsa Farooq, ‘Google’s Gemini – A multimodal model pushing the boundaries of AI’, 7 December 2023. https://pub.aimind.so/googles-gemini-3e4f562e727f.
V.I. Slyusar, ‘Key aspects of the tensor-matrix theory of analysis and processing of multichannel measuring signals in the classical and neural network approaches’, The 10th International Symposium on Precision Mechanical Measurement (ISPMM’2021), 15–17 October 2021, Qingdao, China, VTC. DOI: 10.13140/RG.2.2.31722.64966/1.
V.I. Slyusar, ‘End-face matrix products in radar applications’, Izvestiya VUZ: Radioelektronika, 41 (3), 1998, pp. 71–75.
V.I. Slyusar, ‘New operations of matrix products for application of radars’, IEEE MTT/ED/AP West Ukraine Chapter DIPED 1997 – Direct and Inverse Problems of Electromagnetic and Acoustic Theory, art. no. 710918, 1997, pp. 73–74, doi: 10.1109/DIPED.1997.710918.
G. Hinton, ‘Two Paths to Intelligence’, 25 May 2023, Public Lecture, University of Cambridge, https://www.youtube.com/watch?v=rGgGOccMEiY.
U.S. Pat. No. 10,097,318, ‘Methods and systems for reliable broadcasting using re-transmissions’, October 8 2018 – Trellisware Technologies, Inc., https://patentimages.storage.googleapis.com/b3/c0/e5/360f1245cd938c/US10097318.pdf.
M. Tetiana, Y. Kondratenko, I. Sidenko, G. Kondratenko, ‘Computer Vision Mobile System for Education Using Augmented Reality Technology’, Journal of Mobile Multimedia 17/4, 2021, pp. 555–576.
SAPIENT Interface Control Document, DSTL/PUB145591, 01-Feb-2023, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/
attachment_data/file/1144352/SAPIENT_Interface_Control_Document_v7_FINAL__fixed2_.pdf.
SAPIENT autonomous sensor system, Last updated 20 April 2023, https://www.gov.uk/guidance/sapient-autonomous-sensor-system.
O. Savage, ‘NATO to adopt SAPIENT as C-UAS standard’. Janes, 25 September 2023, https://www.janes.com/defence-news/news-detail/nato-to-adopt-sapient-as-c-uas-standard.
V.I. Slyusar, V.G. Smolyar, ‘Communication channels frequency multiplexing on the basis of superrayleigh signals resolution’, Izvestiya Vysshikh Uchebnykh Zavedenij: Radioelektronika, 46 (7), 2003, pp. 30–39.
A. Garza, M. Mergenthaler-Canseco, ‘TimeGPT-1’, 2023, 12 p., https://arxiv.org/pdf/2310.03589.pdf.
A.I. Shevchenko, ‘Natural Human Intelligence – The Object of Research for Artificial Intelligence Creation’, International Scientific and Technical Conference on Computer Sciences and Information Technologies, vol. 1, 2019, pp. XXVI–XXIX, 8929799, CSIT 2019, Lviv, 17–20 September 2019.
A. Shevchenko, M. Klymenko, ‘Developing a Model of Artificial Conscience’, 15th IEEE International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT’2020, vol. 1, 23–26 Sept. 2020, Lviv-Zbarazh, 2020, pp. 51–54.
B. Dresp-Langley, ‘Artificial Consciousness: Misconception(s) of a Self-Fulfilling Prophecy Nobody Wants’, Qeios, December 2023, https://doi.org/10.32388/DW9JBP.2.
R. Duro, Y.Kondratenko (Eds.), ‘Advances in Intelligent Robotics and Collaborative Automation’, River Publishers, Aalborg, Denmark, 2015, doi: https://doi.org/10.13052/rp-9788793237049.
Y. Kondratenko, A. Shevchenko, Y. Zhukov, G. Kondratenko, O. Striuk, ‘Tendencies and Challenges of Artificial Intelligence Development and Implementation’, Proceedings of the 12th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS’2023, Vol. 1, 2023, pp. 221–226, IDAACS 2023, Dortmund, Germany, 7–9 September 2023.