An Ensemble Approach To Face Recognition In Access Control Systems
DOI:
https://doi.org/10.13052/jmm1550-4646.20310Keywords:
Face image, face recognition, person identification, support operators, ensemble of recognition algorithmsAbstract
The article proposes a method for recognizing faces in mobile devices, based on an ensemble approach to solving the problem of pattern recognition, which ensures high accuracy of results. According to this approach, the basic algorithm is decomposed into two operators: a recognition operator and a decision rule. The recognition operator calculates estimates of the proximity of the tested object to the given classes. The decision rule, based on these estimates, determines whether the tested object belongs to one of the given classes. The ensemble of recognizing operators is formed in the form of a linear polynomial. The values of the polynomial parameters are calculated based on the solution of the multiparameter optimization problem. Experimental studies were carried out using open databases of facial images. When conducting experiments, it was assumed that two options for using basic algorithms would be implemented: separate and ensemble. The accuracy of recognizing objects in the control sample using an ensemble of recognition operators turned out to be higher compared to the accuracy of the best basic recognition algorithm.
The proposed face recognition method can be used in mobile devices, in particular, to verify users when remotely accessing information resources that limited access status.
Downloads
References
Kondratenko, Y., and Mokhor, V. (2023). Guest Editorial Column: Special Issue of Journal of Mobile Multimedia “Artificial Intelligence in Automation with Mobile Applications”. Journal of Mobile Multimedia, 19(03), 1–3.
Kuntsevich, V., Gubarev V., Kondratenko Y., Lebedev D. and Lysenko V. (Eds). Control Systems: Theory and Applications. River Publishers, Gistrup, Delft, 2018.
Purahong, B., Chutchavong, V., Aoyama, H., and Pintavirooj, C. (2020). Hybrid Facial Features with Application in Person Identification. Journal of Mobile Multimedia, 16(1–2), 245–266. https://doi.org/10.13052/jmm1550-4646.161212.
Kortli, Yassin, Maher Jridi, Ayman Al Falou, and Mohamed Atri. 2020. Face Recognition Systems: A Survey. Sensors 20, no. 2: 342. https://doi.org/10.3390/s20020342.
Belhumeour PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces : recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720.
Comon P (1994) Independent component analysis; A new concept? Signal Process 36(3):287–314.
Nabatchian A, Abdel-Raheem E, Ahmadi M (2008) Human face recognition using different moment invariants: a comparative study, image and signal processing, 2008. In: CISP ’08. Congress on, 27–30 May 2008, China.
Narzillo M, Bakhtiyor A, Shukrullo K, Bakhodirjon O, Gulbahor A (2021) Peculiarities of face detection and recognition. 2021 International Conference on Information Science and Communications Technologies (ICISCT). Tashkent, Uzbekistan, 2021, pp. 1–5, https://doi.org/10.1109/ICISCT52966.2021.9670086.
Heisele B, Serre T, Poggio T (2007) A component-based framework for face detection and identification. Int J Comput Vis 74(2):167–181.
Zhang W, Shan S, Gao W, Chang Y, Cao B (2005) Component-based cascade Linear Discriminant Analysis for face recognition. In: Advances in biometric person authentication lecture notes in computer science, Vol. 3338, pp. 19–79.
Paul SK, Bouakaz S, Rahman CM, Uddin MS Component-based face recognition using statistical pattern matching analysis. Pattern Anal Appl. 2021;24(1):299–319. https://doi.org/10.1007/s10044-020-00895-4.
S. Takeda, T. Terada, and M. Tsukamoto. (2012). Implicit context awarenessby face recognition. Journal of Mobile Multimedia, Vol. 8, No. 2, pp. 132–148.
Voroncov K.V. Mashinnoe obuchenie (kurs lekcij). Chast’ pervaja. – Shkola analiza dannyh, 2019. – URL: http://www.machinelearning.ru [in Russian].
Adjabi I., Ouahabi A., Benzaoui A., Taleb-ahmed A. (2020) Past, Present, and Future of Face Recognition: A Review. Electronics, 9(8), 1188; https://doi.org/10.3390/electronics9081188.
Striuk, O., and Kondratenko, Y. (2023). Implementation of Generative Adversarial Networks in Mobile Applications for Image Data Enhancement. Journal of Mobile Multimedia, 19(03), 823–838. https://doi.org/10.13052/jmm1550-4646.1938.
Mohd Naved, V. Ajantha Devi, Loveleen Gaur, Ahmed A. Elngar (Eds). IoT-enabled Convolutional Neural Networks: Techniques and Applications. River Publishers, Gistrup, Delft, 2023.
Kondratenko, Y., Gerasin, O., Kozlov, O., Topalov, A, Topalov, A, Kilimanov, B. (2021). Inspection mobile robot’s control system with remote iot-based data transmission. Journal of Mobile Multimedia, 17(04), 499–526. https://doi.org/10.13052/jmm1550-4646.1742.
Adhikari S., Saha S., “Multiple classifier combination technique for sensor drift compensation using ANN & KNN,” 2014 IEEE International Advance Computing Conference (IACC), Gurgaon, India, 2014, pp. 1184–1189, https://doi.org/10.1109/IAdCC.2014.6779495.
Kittler J., Hatef M., Robert P., Duin W., Matas J. On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239, Mar. 1998.
Mohandes M., Deriche M., Aliyu S. Classifiers Combination Techniques: A Comprehensive Review. IEEE Access. pp. 1–14., Apr. 2018.
Chitroub S. Classifier combination and score level fusion: Concepts and practical aspects. Int. J. Image Data Fusion., vol. 1, no. 2, pp. 113–135.
Polikar R. Ensemble based systems decision making. IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21–45.
Kuncheva L. Combining Pattern Classifier: Methods and Algorithms. Hoboken, NJ, USA: Wiley, 2004.
Zhuravljov Ju.I. Ob algebraicheskom podhode k resheniju zadach raspoznavanija ili klassifikacii // Problemy kibernetiki. – Moskva,1978. – T.33 – S. 5 – 68. [in Russian].
Zhuravljov Ju. I., Rudakov K. V. Ob algebraicheskoj korrekcii procedur obrabotki (preobrazovanija) informacii // Problemy prikladnoj matematiki i informatiki. – 1987. – pp. 187–198. [in Russian].
Voroncov K. V. Optimizacionnye metody linejnoj i monotonnoj korrekcii v algebraicheskom podhode k probleme raspoznavanija // ZhVM i MF. – 2000. – T. 40, 1. – pp. 166–176. [in Russian].
Rudakov K. V. Polnota i universal’nye ogranichenija v probleme korrekcii jevristicheskih algoritmov klassifikacii // Kibernetika. – 1987. – 3. – pp. 106–109. [in Russian].
Fazilov, Sh.Kh., Mirzaev, O.N., Kakharov, S.S. (2023). Building a Local Classifier for Component–Based Face Recognition. Lecture Notes in Computer Science, vol. 13741. Springer, Cham. https://doi.org/10.1007/978-3-031-27199-1_19.
Yu.I. Zhuravlev, V.V. Ryazanov, and O.V. Senko, Recognition. Mathematical methods. Software system Practical applications. Moscow: Fazis, 2006.
Kamilov M.M., Fazylov Sh.H., Mirzaev N.M., Radzhabov S.S. Modeli algoritmov raspoznavanija, osnovannyh na ocenke vzaimosvjazannosti priznakov – Tashkent: Nauka i tehnologija, 2020. – 149 p. [in Russian].
Opanasenko, V., Palahin, A., and Zavyalov, S. “The FPGA–Based Problem-Oriented On–Board Processor”, in Proceedings of the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, vol. 1, (IDAACS’2019), 18–21 September 2019. – Metz, France. – pp. 152–157. https://doi.org/10.1109/IDAACS.2019.8924360.
Opanasenko V.M., Fazilov Sh. Kh, Radjabov S.S., Kakharov S.S. “Multilevel Face Recognition System,” Cybern Syst Anal, 60, pp. 146–151, 2024. https://doi.org/10.1007/s10559-024-00655-w.
Malakhov, K. S. (2023). Letter to the Editor – Update from Ukraine: Development of the Cloud–based Platform for Patient–centered Telerehabilitation of Oncology Patients with Mathematical–related Modeling. International Journal of Telerehabilitation, 15(01). 1–3. https://doi.org/10.5195/ijt.2023.6562.