Outlier Detection Methods and the Challenges for their Implementation with Streaming Data

Authors

  • Ankita Karale Department of Computer Engineering, Sandip Institute of Technology and Research Centre, Nashik, Maharastra, India https://orcid.org/0000-0003-0270-9032

DOI:

https://doi.org/10.13052/jmm1550-4646.1635

Keywords:

Outlier detection, data mining, streaming data, artificial intelligence

Abstract

Outlier detection has been a generally examined issue and highly used in a varied range of spaces. For example, transaction fraud, certain rise and fall in share market, sudden changes in weather, interruption detection for digital security, and fraud detection in security design patterns in data. Data mining is the rule of dealing with big amounts of data and choosing the important. Outlier detection is data mining procedures that identify uncommon occasions and special cases. This paper discusses fundamental concepts of outlier detection, the outlier types and the challenges in their detection. An in-depth presentation of outlier detection techniques is given which are divided into three major categories: supervised, semi supervised, and unsupervised. Special attention is given to unsupervised outlier detection. The existing algorithms and techniques in this category are elaborated in detail and the advantages and shortcomings of these techniques are summarized. The analyses of the existing algorithms for outlier detection show that no one of them completely satisfies all the requirements for scalability, work on high dimensional datasets with satisfactory time complexity and efficient memory usage especially when applied on streaming data. This is why the study suggests that there is a need of a hybrid approach that combines classical algorithms and artificial intelligence algorithm to provide efficient solution for outlier detection of streaming data with good key performance indicators.

Downloads

Download data is not yet available.

Author Biography

Ankita Karale, Department of Computer Engineering, Sandip Institute of Technology and Research Centre, Nashik, Maharastra, India

Ankita Karale received the B.E. and M.E. degree in Computer Engineering. She has more than 7 years of experience in teaching and research. She is Ph.D Scholar in Computer Engineering in Technical University Of Sofia, Bulgaria, Europe.

Her Current research focuses on Data Mining, Artificial Intelligence and Swarm Intelligence.

References

Vries, T, De., Chawla, S., and Houle, M, E., (2010), Finding local anomalies in very high dimensional space, In Proc. International Conference on Data Mining, pp. 128–137.

Knorr, E.M., Ng, R. T., and Tucakov, V., (2000), Distance-based outliers: algorithms and applications, The VLDB Journal, Vol. 8, , pp.237–253.

Orair, G, H., Teixeira, C., Wang, Y., Meira, W, Jr., and Parthasarathy, S., (2010), Distance-based outlier detection: Consolidation and renewed bearing, PVLDB, Vol. 3(2), pp. 1469–1480.

Ramaswamy, S., Rastogi, R., and Shim, K., (2000), efficient algorithms for mining outliers from large data sets. In Proc. SIGMOD, pp. 427–438

Vu, N, H., and Gopalkrishnan, V., (2009), Efficient pruning schemes for distance-based outlier detection, In Proc. European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 160–175.

Zhang, K., Hutter, M., and Jin, H., (2009), A new local distance-based outlier detection approach for scattered real-world data, Proc 13th Pacific Asia Conference Knowledge Discovery in Data Mining, pp. 813–822.

Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J., (2000). LOF: identifying density-based local outliers, In ACM sigmod record, Vol. 29(2), pp. 93-104.

Kriegel, H, P., Kriegel, P., Schubert, E., and Zimek, A., (2009), LoOP: local outlier probabilities, In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM), Hong Kong, China, pp. 1649-1652.

Slezak, D., Yao, J., Peters, J., Ziarko, W., Hu, X., (2011), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Lecture Notes in Computer Science, Vol.3642, Springer, Berlin Heidelberg, pp. 79–87.

Zimek, A., Campello, R. J., and Sander, J. (2014), Ensembles for unsupervised outlier detection: challenges and research questions a position paper, ACMSIGKDD Explorations Newsletter, Vol. 15(1), pp. 11-22.

F. Angiulli, S. Basta, and C. Pizzuti, ``Distance-based detection and prediction of outliers,'' IEEE Trans. Knowl. Data Eng., vol. 18, no. 2, pp. 145-160, Feb. 2006

M. Breunig, H. Kriegel, R. T. Ng, and J. Sander, ``LOF: Identifying density-based local outliers,'' ACM SIGMOD Rec., vol. 29, no. 2, pp. 93-104, 2000.

F. Cao, M. Ester, W. Qian, and A. Zhou, ``Density-based clustering over an evolving data stream with noise,'' in Proc. SIAM Conf. Data Mining, Apr. 2006, pp. 328-339.

Z. Zheng, H. Y. Jeong, T. Huang, and J. Shu, ``KDE based outlier detection on distributed data streams in multimedia network,'' Multimedia Tools Appl., vol. 76, no. 17, pp. 18027-18045, Sep. 2017.

H. P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, ``Outlier detection in axis-parallel subspaces of high dimensional data,'' in Proc. Pacific-Asia Conf. Knowl. Discovery Data Mining, Berlin, Germany: Springer, 2009,pp. 831-838.

J. Zhang, ``Advancement of outlier detection: A survey,'' ICST Trans. Scalable Inf. Syst., vol. 13, pp. 1-26, Feb. 2013.

A. Lazarevic and V. Kumar, ``Feature bagging for outlier detection,'' in Proc. 11th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2005, pp. 157-166.

V. Barnett and T. Lewis, Outliers in Statistical Data. Hoboken, NJ, USA: Wiley, 1994

S. Wallsh, ``A review of statistical outlier methods,'' Pharmaceutical Technol., vol. 30, no. 11, pp. 1-5, 2006

E. Schubert, A. Zimek, and H.-P. Kriegel, ``Local outlier detection reconsidered: A generalized view on locality with applications to spatial, video, and network outlier detection,'' Data Mining Knowl. Discovery, vol. 28, no. 1, pp. 190-237, 2014.

J. Tang, Z. Chen, A. Fu, and D. Cheung, ``Enhancing effectiveness of outlier detections for low density patterns,'' in Advances in Knowledge Discovery and Data Mining. Berlin, Germany: Springer, 2002, pp. 535-548.

H. Kriegel, P. Kröger, E. Schubert, and A. Zimek, ``LoOP: Local outlier probabilities,'' in Proc. 18th ACM Conf. Inf. Knowl. Manage., Nov. 2009, pp. 1649-1652

S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos, ``LOCI: Fast outlier detection using the local correlation integral,'' in Proc. 19th Int. Conf. Data Eng., Mar. 2003, pp. 315-326.

D. Ren, B. Wang, and W. Perrizo, ``RDF: A density-based outlier detection method using vertical data representation,'' in Proc. Int. Conf. Data Mining, Nov. 2004, pp. 503-506.

W. Jin, A. K. Tung, J. Han, and W. Wang, ``Ranking outliers using symmetric neighborhood relationship,'' in Proc. 10th Pacific-Asia Conf. Adv. Knowl. Discovery Data Mining, 2006, pp. 577-593.

K. Zhang, M. Hutter, and H. Jin, ``A new local distance-based outlier detection approach for scattered real-world data,'' in Proc. Pacific-Asia Conf. Knowl. Discovery Data Mining, 2009, pp. 813-822.

M. Bai, X. Wang, J. Xin, and G. Wang, ``An Efcient algorithm for distributed density-based outlier detection on big data,'' Neurocomputing, vol. 181, pp. 19-28, Mar. 2016.

B. Tang and H. He, ``A local density-based approach for outlier detection,'' Neurocomputing, vol. 241, pp. 171180, Jun. 2017. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0925231217303302

H. Kriegel, P. Kröger, E. Schubert, and A. Zimek, ``LoOP: Local outlier probabilities,'' in Proc. 18th ACM Conf. Inf. Knowl. Manage., Nov. 2009, pp. 1649-1652.

S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos, ``LOCI: Fast outlier detection using the local correlation integral,'' in Proc. 19th Int. Conf. Data Eng., Mar. 2003, pp. 315-326.

K. Cao, L. Shi, G. Wang, D. Han, and M. Bai, ``Density-based local outlier detection on uncertain data,'' in Web-Age Information Management. WAIM (Lecture Notes in Computer Science), vol. 8485, F. Li, G. Li, S. Hwang, B. Yao, and Z. Zhang, Eds. Cham, Switzerland: Springer, 2014.

F. Keller, E. Müller, and K. Bohm, ``HiCS: High contrast subspaces for density-based outlier ranking,'' in Proc. IEEE 28th Int. Conf. Data Eng. (ICDE), Apr. 2012, pp. 1037-1048.

R. J. G. B. Campello, D. Moulavi, A. Zimek, and J. Sander, ``Hierarchical density estimates for data clustering, visualization, and outlier detection,'' ACM Trans. Knowl. Discovery Data (TKDD), vol. 10, no. 1, 2015,Art. no. 5. doi: 10.1145/2733381

R. Momtaz, N. Mohssen, and M. A. Gowayyed, ``DWOF: A robust density-based outlier detection approach,'' in Proc. Iberian Conf. Pattern Recognit. Image Anal., 2013, pp. 517-525.

H. Fan, O. R. ZaÏane, A. Foss, and J. Wu, ``Resolution-based outlier factor: Detecting the top-n most outlying data points in engineering data,'' Knowl. Inf. Syst., vol. 19, no. 1, pp. 31-51, 2009.

K.Wu, K. Zhang,W. Fan, A. Edwards, and P. S. Yu, ``RS-forest: A rapid density estimator for streaming anomaly detection,'' in Proc. IEEE Int. Conf. Data Mining, Dec. 2014, pp. 600-609.

E. Lozano and E. Acua, ``Parallel algorithms for distance-based and density-based outliers,'' in Proc. 5th IEEE Int. Conf. Data Mining, Nov. 2005, pp. 729-732

F. I. Vázquez, T. Zseby, and A. Zimek, ``Outlier detection based on low density models,'' Proc. ICDM Workshops, 2018, pp. 970-979.

J. Ning, L. Chen, and J. Chen, ``Relative density-based outlier detection algorithm,'' in Proc. CSAI/ICIMT, Dec. 2018, pp. 227-231.

S. Su, L. Xiao, L. Ruan, F. Gu, S. Li, Z. Wang, and R. Xu, ``An efficient density-based local outlier detection approach for scattered data,'' IEEE Access, vol. 7, pp. 1006-1020, 2019

W. Wang, J. Yang, and R. Muntz, ``STING: A statistical information grid approach to spatial data mining,'' in Proc. 23rd VLDB Conf., Aug. 1997, pp. 186-195.

S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama, and T. Kanamori, ``Statistical outlier detection using direct density ratio estimation,'' Knowl. Inf. Syst., vol. 26, no. 2, pp. 309-336, 2011.

H. Kriegel, P. Kröger, and A. Zimek, ``Outlier detection techniques,'' in Proc. Tutorial KDD, 2009, pp. 1-10.

E. Eskin, ``Anomaly detection over noisy data using learned probability distributions,'' in Proc. 17th Int. Conf. Mach. Learn. (ICML). Jul. 2000, pp. 255-262.

E. M. Knorr, R. T. Ng, and V. Tucakov, ``Distance-based outliers: Algorithms and applications,'' VLDB J., vol. 8, nos. 34, pp. 237-253, 2000.

X. Yang, L. J. Latecki, and D. Pokrajac, ``Outlier detection with globally optimal exemplar-based GMM,'' in Proc. SIAM Int. Conf. on Mining (SDM), Apr. 2009, pp. 145-154.

X. Tang, R. Yuan, and J. Chen, ``Outlier detection in energy disaggregation using subspace learning and Gaussian mixture model,'' Int. J. Control Autom., vol. 8, no. 8, pp. 161-170, 2015

B. N. Saha, N. Ray, and H. Zhang, ``Snake validation: A PCA-based outlier detection method,'' IEEE Signal Process. Lett., vol. 16, no. 6, pp. 549-552, Jun. 2009.

M. H. Satman, ``A new algorithm for detecting outliers in linear regression,'' Int. J. Statist. Probab., vol. 2, no. 3, pp. 101-109, Aug. 2013.

C. M. Park and J. Jeon, ``Regression-based outlier detection of sensor measurements using independent variable synthesis,'' in Proc. Int. Conf. Data Sci., Dec. 2015, pp. 78-86.

P. I. F. Dalatu, A. Fitrianto, and A. Mustapha, ``A comparative study of linear and nonlinear regression models for outlier detection,'' in Proc. Int. Conf. Soft Comput. Data Mining, 2017, vol. 549, pp. 316-327.

M. Pavlidou and G. Zioutas, ``Kernel density outlier detector,'' in Topics Nonparametric Statistics. New York, NY, USA: Springer, 2014, pp. 241-250.

L. J. Latecki, A. Lazarevic, and D. Pokrajac, ``Outlier detection with kernel density functions,'' in Proc. 5th Int. Conf. Mach. Learn. Data Mining Pattern Recognit., 2007, pp. 61-75.

J. Gao, W. Hu, Z. Zhang, X. Zhang, and O. Wu, ``RKOF: Robust kernel based local outlier detection,'' in Proc. Pacific-Asia Conf. Knowl. Discovery Data Mining, 2011, pp. 270-_283

V. S. K. Samparthi and H. K. Verma, ``Outlier detection of data in wireless sensor networks using kernel density estimation,'' Int. J. Comput. Appl.,vol. 5, no. 7, pp. 28-32, Aug. 2010

A. O. Boedihardjo, C.-T. Lu, and F. Chen, ``Fast adaptive kernel density estimator for data streams,'' Knowl. Inf. Syst., vol. 42, no. 2, pp. 285-317,Feb. 2015.

M. S. Uddin, A. Kuh, and Y. Weng, ``Online bad data detection using kernel density estimation,'' in Proc. IEEE Power Energy Society General Meeting, Jul. 2015, pp. 1-5.

S. Smrithy, S. Munirathinam, and R. Balakrishnan, ``Online anomaly detection using non-parametric technique for big data streams in cloud collaborative environment,'' in Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2016, pp. 1950-1955.

L. Zhang, J. Lin, and R. Karim, ``Adaptive kernel density-based anomaly detection for nonlinear systems,'' Knowl.-Based Syst., vol. 139, pp. 50-63, Jan. 2018.

X. Qin, L. Cao, E. A. Rundensteiner, and S. Madden, ``Scalable kernel density estimation-based local outlier detection over large data streams,'' in Proc. EDBT, 2019, pp. 421-432.

M. Goldstein and A. Dengel, ``Histogram-based outlier score (HBOS): A fast unsupervised anomaly detection algorithm,'' in Proc. Poster Demo Track, Sep. 2012, pp. 59-63.

P. J. Rousseeuw and M. Hubert, ``Robust statistics for outlier detection,'' Data Mining Knowl. Discovery, vol. 1, no. 1, pp. 73-79, 2011.

H. Du, S. Zhao, and D. Zhang, ``Robust local outlier detection,'' in Proc. IEEE Int. Conf. Data Mining Workshop (ICDMW), Nov. 2015,pp. 116-123.

J. Gebhardt, M. Goldstein, F. Shafait, and A. Dengel, ``Document authentication using printing technique features and unsupervised anomaly detection,'' in Proc. 12th Int. Conf. Document Anal. Recognit ., Aug. 2013, pp. 479-483.

F. Angiulli and C. Pizzuti, ``Fast outlier detection in high dimensional spaces,'' in Proc. Eur. Conf. Princ. Data Mining Knowl. Discovery, Sep. 2002, pp. 15-26.

T. T. Dang, H. Y. T. Ngan, and W. Liu, ``Distance-based k-nearest neighbors outlier detection method in large-scale traffic data,'' in Proc. IEEE Int. Conf. Digital Signal Process., Jul. 2015, pp. 507-510.

E. M. Knorr and R. T. Ng, ``Algorithms for mining distance based outliers in large data sets,'' in Proc. 24th Int. Conf. Very Large Databases Conf., 1998, pp. 392-403.

S. Ramaswamy, R. Rastogi, and S. Kyuseok, ``Efficient algorithms for mining outliers from large data sets,'' in Proc. ACM SIGMOD Int. Conf. Manage. Data, May 2000, pp. 427-438.

A. Ghoting, S. Parthasarathy, and M. E. Otey, ``Fast mining of distance based outliers in high-dimensional datasets,'' Data Mining Knowl. Discovery, vol. 16, vol. 3, pp. 349-364, Jun. 2008.

H. Huang, K. Mehrotra, and C. K. Mohan, ``Rank-based outlier detection,'' J. Stat. Comput. Simul., vol. 83, no. 3, pp. 518-531, Oct. 2013.

G. Bhattacharya, K. Ghosh, and A. S. Chowdhury, ``Outlier detection using neighborhood rank difference,'' Pattern Recognit. Lett., vol. 60, pp. 24-31, Aug. 2015

X. Wang, X. L. Wang, Y. Ma, and D. M. Wilkes, ``A fast MST-inspired kNN-based outlier detection method,'' Inf. Syst., vol. 48, pp. 89-112, Mar. 2015.

M. Radovanovi¢, A. Nanopoulos, and M. Ivanovi¢, ``Reverse nearest neighbors in unsupervised distance-based outlier detection,'' IEEE Trans. Knowl. Data Eng., vol. 27, no. 5, pp. 1369-1382, May 2015

J. Huang, Q. Zhu, L. Yang, and J. Feng, ``A non-parameter outlier detection algorithm based on natural neighbor,'' Knowl. Based Syst., vol. 92,pp. 71-77, Jan. 2016.

J. Ha, S. Seok, and J.-S. Lee, ``A precise ranking method for outlier detection,'' Inf. Sci., vol. 324, pp. 88107, Dec. 2015.

S. Bay and M. Schwabacher, ``Mining distance-based outliers in near linear time with randomization and a simple pruning rule,'' in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2003, pp. 29-38.

F. Angiulli and F. Fassetti, ``Very efficient mining of distance-based outliers,'' Proc. 16th ACM Conf. Inf. Knowl. Manage., Nov. 2007, pp. 791-800.

D. Ren, I. Rahal, W. Perrizo, and K. Scott, ``A vertical distance-based outlier detection method with local pruning,'' in Proc. 13th ACM CIKM Int. Conf. Inf. Knowl. Manage., Nov. 2004, pp. 279-284.

N. H. Vu and V. Gopalkrishnan, ``Efficient pruning schemes for distance based outlier detection,'' in Proc. Eur. Conf. Mach. Learn. Knowl. Discovery Databases, 2009, pp. 160-175.

F. Angiulli and F. Fassetti, ``Distance-based outlier queries in data streams: The novel task and algorithms,'' Data Mining Knowl. Discovery, vol. 20, pp. 290-324, Mar. 2010.

C. C. Aggarwal, ``On abnormality detection in spurious populated data streams,'' in Proc. SIAM Int. Conf. Data Mining, Apr. 2005, pp. 80-91.

S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunopulos, ``Online outlier detection in sensor data using nonparametric models,'' in Proc. Int. Conf. Very Large Data Bases, Sep. 2006,pp. 187-198.

D. Yang, E. A. Rundensteiner, and M. Ward, ``Neighbor-based pattern detection for windows over streaming data,'' in Proc. 12th Int. Conf. Extending Database Technol., Mar. 2009, pp. 529-540.

M. Kontaki, A. Gounaris, A. N. Papadopoulos, and K. Tsichlas, ``Continuous monitoring of distance-based outliers over data streams,'' in Proc.IEEE 27th Int. Conf. Data Eng., Apr. 2011, pp. 135-146.

F. Angiulli and F. Fassetti, ``Detecting distance-based outliers in streams of data,'' in Proc. 16th ACM Conf. Inf. Knowl. Manage., Nov. 2007,pp. 811-820.

L. Cao, D. Yang, Q. Wang, Y. Yu, J. Wang, and E. A. Rundensteiner, ``Scalable distance-based outlier detection over high-volume data streams,'' in Proc. IEEE 30th Int. Conf. Data Eng., Apr. 2014, pp. 76-87.

M. B. Al-Zoubi, ``An effective clustering-based approach for outlier detection,'' Eur. J. Sci. Res., vol. 28, no. 2, pp. 310-316, Jan. 2009.

J. MacQueen, ``Some methods for classification and analysis of multivariate observations,'' in Proc. 5th Berkeley Symp. Math. Statist, Prob.,Jun. 1967, vol. 1, pp. 281-297.

Y. Chen and L. Tu, ``Density-based clustering for real-time stream data,” in Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,Aug. 2007, pp. 133-142.

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, ``A framework for clustering evolving data streams,'' in Proc. 29 th Int. Conf. Very Large Database, vol. 29, pp. 81-92.

I. Assent, P. Kranen, C. Baldauf, and T. Seidl, ``Any Out: Anytime outlier detection on streaming data,'' in Proc. 17th Int. Conf. Database Syst. Adv. Appl., 2012, pp: 228-242.

M. Elahi, K. Li, W. Nisar, X. Lv, and H. Wang, ``Efficient clustering based outlier detection algorithm for dynamic data stream,'' in Proc. 5th Int. Conf. Fuzzy Syst. Knowl. Discovery, vol. 5, Oct. 2008, pp. 298-304.

D. Pokrajac, A. Lazarevic, and L. J. Latecki, ``Incremental local outlier detection for data streams,'' in Proc. IEEE Symp. Comput. Intell. Data Mining, Apr. 2007, pp. 504-551.

Yogita and D. Toshniwala, ``A framework for outlier detection in evolving data streams by weighting attributes in clustering,'' in Proc. 2nd Int. Conf. Commun., Comput. Secur., vol. 6, 2012, pp. 214-222. doi:10.1016/j.protcy.2012.10.026.

S. V. Bhosale, ``Outlier detection in streaming data using clustering approached,'' Int. J. Adv. Comput. Sci. Inf. Technol., vol. 5, no. 5, pp. 6050-6053, 2014.

M. Moshtaghi, J. C. Bezdek, T. C. Havens, C. Leckie, S. S. Karunasekera, S. Rajasegarar, and M. Palaniswami, ``Streaming analysis in wireless sensor networks,'' Wireless Commun. Mobile Comput., vol. 14, no. 9, pp. 905-921, Jun. 2014.

M. Moshtaghi, J. C. Bezdek, C. Leckie, S. Karunasekera, and M. Palaniswami, ``Evolving fuzzy rules for anomaly detection in data streams,'' IEEE Trans. Fuzzy Syst., vol. 23, no. 3, pp. 688-700, 2015.

M. Salehi, C. A. Leckie, M. Moshtaghi, and T. Vaithianathan, ``A relevance weighted ensemble model for anomaly detection in switching data streams,'' in Proc. Pacific-Asia Conf. Knowl. Discovery Data Mining, 2014, pp. 461-473.

M. Chenaghlou, M. Moshtaghi, C. Leckie, and M. Salehi, ``An efficient method for anomaly detection in non-stationary data streams,'' in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1-6.

H. Rizk, S. Elgokhy, and A. Sarhan, ``A hybrid outlier detection algorithm based on partitioning clustering and density measures,'' in Proc. 10th Int. Conf. Comput. Eng. Syst. (ICCES), Dec. 2015, pp. 175-181.

M. Chenaghlou, M. Moshtaghi, C. Leckie, and M. Salehi, ``Online clustering for evolving data streams with online anomaly detection,'' in Proc. Pacific-Asia Conf. Knowl. Discovery Data Mining. New York, NY, USA: Springer, 2018, pp. 508-521.

Zimek, M. Gaudet, R. J. Campello, and J. Sander, ``Subsampling for efficient and effective unsupervised outlier detection ensembles,'' in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2013, pp. 428-436

C. C. Aggarwal, ``Outlier ensembles: Position paper,'' SIGKDD Explor. Newslett., vol. 14, pp. 49-58, Apr. 2013.

Zimek, R. J. Campello, and J. Sander, ``Data perturbation for outlier detection ensembles,'' in Proc. 26th Int. Conf. Sci. Stat. Database Manage., Jul. 2014, pp. 1-13. doi: 10.1145/2618243.2618257

G. O. Campos, A. Zimek, and W. Meira, Jr., ``An unsupervised boosting strategy for outlier detection ensembles,'' in Proc. 22nd Pacific-Asia Conf. Adv. Knowl. Discovery Data Mining (PAKDD), 2018, pp. 564-576

M. Shukla, Y. P. Kosta, and P. Chauhan, ‘‘Analysis and evaluation of outlier detection algorithms in data streams,’’ in Proc. IEEE Int. Conf. Comput., Commun. Control (IC4), Sep. 2015, pp. 1–8.

L. Tran, L. Fan, and C. Shahabi, ‘‘Distance-based outlier detection in data streams,’’ in Proc. VLDB Endowment (PVLDB), vol. 9, no. 12, pp. 1089–1100, Aug. 2016.

H. P. Kriegel, P. Kréger, E. Schubert, and A. Zimek, ``Interpreting and unifying outlier scores,'' in Proc. SDM, Apr. 2011, pp. 13-24.

E. Schubert, R. Wojdanowski, A. Zimek, and H. P. Kriegel, ``On evaluation of outlier rankings and outlier scores,'' in Proc. SDM, Apr. 2012, pp. 1047-1058.

H. V. Nguyen, H. H. Ang, and V. Gopal Krishnan, ‘‘Mining outliers with ensemble of heterogeneous detectors on random subspaces,” in Database Systems for Advanced Applications, Berlin, Germany: Springer, 2010, pp. 368–383.

. C. C. Aggarwal, ‘‘Outlier ensembles,’’ ACM SIGKDD Explor. Newslett., vol. 14, no. 2, pp. 49–80, 2017

pp.237–253

Downloads

Published

2020-11-28

How to Cite

Karale, A. (2020). Outlier Detection Methods and the Challenges for their Implementation with Streaming Data. Journal of Mobile Multimedia, 16(3), 351–388. https://doi.org/10.13052/jmm1550-4646.1635

Issue

Section

Articles