IMPROVEMENT QUALITY OF THE RECOMMENDATION SYSTEM USING THE INTRINSIC CONTEXT

Authors

  • LATIFA BABA-HAMED RIIR Laboratory, University of Oran, Algeria
  • REDA SOLTANI RIIR Laboratory, University of Oran, Algeria

Keywords:

Recommendation, context, user profile, preference, matching operator, precision

Abstract

The traditional recommendation systems provide a solution to the problem of information overload. They provide users with the information and content which are the most relevant for them. These systems ignore the fact that users interact with systems in a particular context. Context plays an important role in determining users' behavior by providing additional information that can be exploited in building predictive models. Context-aware recommendation systems take this information into account to make predictions in order to improve the performance of the filtering process. Most existing Context-aware systems use the extrinsic context. In this paper, we propose an intrinsic contextual recommendation system that we can apply to the recommendation of contents in general (i.e. book, Url, item, product, movie, song, restaurant, etc.). The context in our approach is extracted from the set of attributes for the object itself. Our system use a contextual pre-filtering technique based on implicit user feedback. To show the performance of the recommendation process, we consider the movie domain as a case study.

 

Downloads

Download data is not yet available.

References

Abbar, S., Personalized access model for content delivery platforms: A service oriented approach. PhD thesis, Versailles University. France, 2010.

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., and Steggles, P. Towards a better understanding of context and contextawareness. In HUC '99: Proceedings of the 1st international symposium on Handheld and Ubiquitous Computing, pages 304-307, London, UK, 1999. Springer.

Adomavicius, G., Sankaranarayanan, R., Sen, S., and Tuzhilin, A., Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Information System, 23(1):103–145, 2005.

Adomavicius, G., and Tuzhilin, A. 2008. Context-Aware Recommender Systems. Tutorial presented at the 2008 ACM Conference on Recommender systems, 335-336.

Amazon: www.amazon.com.

APMD: http://apmd.prism.uvsq.fr

Baba-Hamed, L., Soltani, R. et Sabri, K., Construction d‟une ontologie pour la recommandation de films à un utilisateur. Actes des Ateliers des 21es Journées Francophones d‟Ingénierie des Connaissances (IC 2010), Nîmes, France, juin 2010.

Baba-Hamed, L., Abbar, S., Soltani, R., et Bouzeghoub, M., Elaboration et Evaluation d‟un Système de Recommandation Sémantique, in proc. 1st international Conference on Information Systems and Technologies (ICIST‟11), PP.515-523, 24-26 April, 2011.

Baltrunas, L., Amatriain, X., Towards Time-Dependant Recommendation based on Implicit Feedback, cars 2009.

Blei, D., Ng, A., and Jordan, M., “Latent dirichlet allocation,” The Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

Cantador, I., Castells, P., Semantic Contextualisation in a News Recommender System, Cars 2009.

Castagnos. S., Modélisation de comportements et apprentissage stochastique non supervisé de stratégies d'interactions sociales au sein de systèmes temps réel de recherche et d'accès à l'information, thèse de doctorat de l‟université Nancy 2. Novembre 2008.

De Carolis, B., Cozzolongo, G., Pizzutilo, S., and Silvestri, V. 2007. MyMap: Generating personalized tourist descriptions. Applied Intelligence 26, 2, 111-124.

Domingues, M., Mário Jorge, A., Soares, C., Using Contextual Information as Virtual Items on Top-N Recommender Systems, cars 2009.

Hussein, T., Linder, T., Gaulke, W., Ziegler. J., Context-aware recommendations on rails. Cars 2009.

Jiang, J., and Conrath, D., Semantic similarity based on corpus statistics and lexical taxonomy. In Proceedings of the 10th International Conference on Research in Computational Linguistics, Taiwan. 1998.

Kostadinov, D., Personnalisation de l‟information et gestion de profils utilisateur. PhD Thesis, University of Versailles Saint-Quentin-en-Yvelines, Décembre 2007.

Markov, Kr., and Ivanova, Kr., An ontology-content-based filtering method. In Proceedings of the Fifth International Conference “Information Research and Applications”, Varna, Bulgaria. June 2007.

MovieLens: http: movielens.umn.edu

Nguyen, A. T., COCoFil2: Un nouveau système de filtrage collaboratif basé sur le modèle des espaces de communautés. Thèse de Docteur. Université Joseph Fourier, Grenoble I. Novembre 2006.

Panniello, U., Tuzhilin, A., Gorgoglione, M., Experimental Comparison of Pre- vs. Post-filtering Approaches in Context-Aware Recommender Systems, 2009.

Pazzani, M. J., A framework for collaborative, content-based and demographic filtering. In technical report, University of California, Irvine., 1999.

Peralta, V., Extraction and Integration of MovieLens and IMDb Data, technical report, APMD project, Laboratoire PRiSM, Université de Versailles .July 2007.

Sourcetone : www.sourcetone.com.

Shoval, P., Maidel, V., Shapira, B., An Ontology- Content-Based Filtring Method, I.Tech-2007, Information Research and Applications, 2007.

Rendle, S., Factorization machines. In Proceedings of the 10th IEEE International Conference on Data Mining. IEEE Computer Society, 2010.

Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L., Fast Context aware Recommendations with Factorization Machines, Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval 2011, pages 635-644, ISBN: 978-1-4503-0757-4.

Wang, Y., Liu, Y., Yu, X., Collaborative Filtering with Aspect-based Opinion Mining: A Tensor Factorization Approach, 2012 IEEE 12th International Conference on Data Mining, pages 1152 – 1157, ISBN: 978-1-4673-4649-8.

Downloads

Published

2014-02-16

How to Cite

BABA-HAMED, L. ., & SOLTANI, R. (2014). IMPROVEMENT QUALITY OF THE RECOMMENDATION SYSTEM USING THE INTRINSIC CONTEXT. Journal of Mobile Multimedia, 9(3-4), 189–213. Retrieved from https://journals.riverpublishers.com/index.php/JMM/article/view/4611

Issue

Section

Articles