MULTI-FEATURE INTEGRATION WITH RELEVANCE FEEDBACK ON 3D MODEL SIMILARITY RETRIEVAL
Keywords:
3D model similarity retrieval, feature integration, relevance feedback, multipoint queriesAbstract
In this paper, we combine the use of Reduced Feature Vector Integration (RFI) and Distance Integration (DI) with Relevance Feedback (RF) on 3D model similarity retrieval. The RFI outperforms the individual FVs and gives high probability of providing relevant objects, other than the query itself, on the limited-size of display window. Therefore, user may select as many relevant objects as possible just after the initial query for the next RF iteration. In order to deal with the user’s feedback, we have used and extended an RF algorithm, which enhances the precision by employing multipoint queries and estimating feature relevance derived from both the variance of the distance of relevant objects and the maximum rank of them. In addition, an Extended Exclusion Set (EES) incorporating with Exclusion Set (ES) is introduced. Using EES and ES, the RF algorithm pushes prospectively irrelevant objects away from the queries. By utilizing both approaches, the small number of RF iterations significantly improves the retrieval precision.
Downloads
References
G. Cybenko, A. Bhasin, K. D. Cohen: “Pattern Recognition of 3D CAD Objects: Towards
Electronic Yellow Pages of Mechanical Part”. Smart Eng. Design, vol. 1, pp. 1-13, 1997.
H. -P. Kriegel, P. Kröger, Z. Mashael, M. Pfeifle, M. Potke, T. Seidl: “Effective Similarity
Search on Voxelized CAD Objects”. Proc. 8th Conf. On Database Systems for Advanced
Applications, Japan, 2003.
Y. Liu, F. Dellaert: “A Classification Based Similarity Metric for 3D Image Retrieval”. Proc.
of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 1998.
D. A. Keim: “Efficient Geometry-based Similarity Search of 3D Spatial Databases”.
Proceedings of the 199 ACM SIGMOD International Conf. on Management of Data. ACM
Press, NY, pp 419-430, 1999.
J.-S. Yeh, D.-Y. Chen, B.-Yu. Chen, M. Ouhyoung: “A Web-based Three-dimensional
Protein Retrieval System by Matching Visual Similarity”. Bioinformatics 2005 21: 3056-
, 2005.
Z. Geradts, H. Hardy, A. Poortman, J. Bijhold: “Evaluation of contents based image retrieval
methods for a database of logos on drug tablets”. Proceedings of SPIE Enabling Technologies
for Law Enforcement and Security. Vol. 4232, pp. 553-562, 2001.
M. Novotni, R. Klein: “Geometric 3D Comparison – an Application”. ECDL WS Generalized
Documents, 2001.
O. Ronneberger, H. Burkhardt, E. Schultz: “General-purpose Object Recognition in 3D
Volume Data Sets using Gray-Scale Invariants – Classification of Airborne Pollen-Grains
Recorded with a Confocal Laser Scanning Microscope”. Proceedings of the 16th International
Conference on Pattern Recognition, Quebec, Canada, September 2002.
M. Ankerst, G. Kastenmueller, H.-P. Kriegel, T. Seid: “3D Shape Histograms for Similarity
Search and Classification in Spatial Databases”. SSD, 1999.
M. Hilaga, Y. Shinagawa, T. Kohmura, T. L. Kunii: “Topology Matching for Fully Automatic
Similarity Estimation of 3D Shapes”. ACM SIGGRAPH, 2001.
H. Laga, H. Takashi, M. Nakajima: “Geometry Image Matching for Similarity Estimation of
D Shapes”. CGI'04 pp. 490-496, 2004.
H. Sundar, D. Sliver, N. Gagvani, S. Dickinson: “Skeleton Based Shape Matching and
Retrieval”. International Conf. on Shape Modeling and Applications 2003, May 12 - 15, 2003.
M. Elad, A. Tal, S. Ar.: “Directed Search in a 3D Objects Database Using SVM”. HPL-2000-
(R.1), 2000.
C. -S. Wang, J. -F. Chen, L. -P. Hung, C. -H. Huang.: “Efficient Indexing and Retrieval
Scheme for VRML Database”. IC CSCW, 2004.
C. M. Cyr, B. B. Kimia: “3D Object Recognition Using Shape Similarity-Based Aspect
Graph”. ICCV, 2001.
D. -Y. Chen, X. -P. Tian, Y. -T. Shen, M. Ouhyoung: “On Visual Similarity Based 3D Model
Retrieval”. Eurographics, 2003.
D. V. Vranić, D. Saupe: “3D Shape Descriptor Based on 3D Fourier Transform”. Proceedings
of the EURASIP Conference on Digital Signal Processing for Multimedia Communications
and Services (ECMCS 2001), Budapest, Hungary, Sept. 2001.
D. V. Vranić: “3D Model Retrieval”. Ph.D. Dissertation, Universität Leipzig, 2004.
S. Akbar, J. Küng, R. Wagner: “Multi-feature based 3D Model Similarity Retrieval”.
International Conference on Computing and Informatics, Malaysia, 2006.
E. Paquet, M. Rioux, A. Murching, T. Naveen, A. Tabatai: “Description of Shape Information
for 2-D and 3-D Objects”. Signal Processing Image Comm., Elsevier Science B.V., 2000.
I. Atmosukarto, W. K. Leow, Z. Huang: “Feature Combination and Relevance Feedback for
D Model Retrieval”. MMM, pp. 334-339, 11th International Multimedia Modeling
Conference, Australia, 2005.
Q. Iqbal, J.K. Aggarwal: “Feature Integration, Multi-image Queries and RF in Image
Retrieval”. 6th Int’l Conf. on Visual Information System 2003, pp. 467-474, Florida 2003.
B. Bustos, D. Keim, D. Saupe, T. Schrech, D. Vranić: “Automatic Selection and Combination
of Descriptors for Effective 3D Similarity Search”. IEEE Sixth International Symposium on
Multimedia Software Engineering (ISMSE'04) pp. 514-521, 2004.
P. J. Kostelec, D. R. Rockmore: “S2Kit: A Lite Version of SpharmonicKit”. Department of
Mathematics, Dartmouth College, 2004.
F. Murtagh: The source code of Principal Component Analysis, The Departement of
Statistics, Carnegie Mellon University. http://lib.stat.cmu.edu/multi/pca.c. Last Access:
December 2005.
S. Akbar, J. Küng, R. Wagner: “Multi-feature Integration on 3D Model Similarity Retrieval”.
The 1st International Conference on Digital Information Management (ICDIM), India 2006.
Princeton Shape Retrieval and Analysis Group: “3D Model Search Engine”.
http://shape.cs.princeton.edu /search.html. Last access: September 2005.
D. V. Vranić: ”Content-based Classification of 3D-models by Capturing spatial
Characteristics”. http://merkur01.inf. uni-konstanz.de/CCCC/. Last access: September 2005.
Utrecht University Object Database, http://www.cs.uu.nl/ centers/give/imaging/3drecog/
dmatching.html. Last Access: September 2005.
J.J. Rocchio Jr.: “Relevance Feedback in Information Retrieval”, The SMART System, G.
Salton, ed., pp. 313-323, Prentice Hall, 1971.
Georgy Gimel'farb. CBIR: Indexing and Retrieval. http://www.cs.auckland.ac.nz/
compsci708s1c/lectures/Glect-html/topic5c708FSC.htm. 2005.
X. S. Zhou, T. S. Huang: “Small Sample Learning during Multimedia Retrieval using
BiasMap”. CVPR (1). pp 11-17. 2001.
H. Y. Bang, T. Chen: “Feature Space Warping: An Approach to Relevance Feedback”. In
ICIP 2002.
A. D. Bimbo, P. Pala: “Content-Based Retrieval of 3D Models”. ACM Transactions on
Multimedia Computing, Comm. and Applications, Vol. 2, No. 1, pp. 20-43, February 2006.
K. Porkaew, K. Chakrabarti: “Query refinement for multimedia similarity retrieval in
MARS”, Proceedings of the 7th ACM int’l conference on Multimedia, pp: 235 – 238. 1999.
X. Jin, J. C. French. “Improving Image Retrieval Effectiveness via Multiple Queries”. Proc.
of the 1st ACM international workshop on Multimedia databases, pp. 86-93, 2003.