MULTI-FEATURE INTEGRATION WITH RELEVANCE FEEDBACK ON 3D MODEL SIMILARITY RETRIEVAL

Authors

  • SAIFUL AKBAR Johannes Kepler University of Linz, Austria
  • JOSEF KÜNG Johannes Kepler University of Linz, Austria
  • ROLAND WAGNER Johannes Kepler University of Linz, Austria

Keywords:

3D model similarity retrieval, feature integration, relevance feedback, multipoint queries

Abstract

In this paper, we combine the use of Reduced Feature Vector Integration (RFI) and Distance Integration (DI) with Relevance Feedback (RF) on 3D model similarity retrieval. The RFI outperforms the individual FVs and gives high probability of providing relevant objects, other than the query itself, on the limited-size of display window. Therefore, user may select as many relevant objects as possible just after the initial query for the next RF iteration. In order to deal with the user’s feedback, we have used and extended an RF algorithm, which enhances the precision by employing multipoint queries and estimating feature relevance derived from both the variance of the distance of relevant objects and the maximum rank of them. In addition, an Extended Exclusion Set (EES) incorporating with Exclusion Set (ES) is introduced. Using EES and ES, the RF algorithm pushes prospectively irrelevant objects away from the queries. By utilizing both approaches, the small number of RF iterations significantly improves the retrieval precision.

 

Downloads

Download data is not yet available.

References

G. Cybenko, A. Bhasin, K. D. Cohen: “Pattern Recognition of 3D CAD Objects: Towards

Electronic Yellow Pages of Mechanical Part”. Smart Eng. Design, vol. 1, pp. 1-13, 1997.

H. -P. Kriegel, P. Kröger, Z. Mashael, M. Pfeifle, M. Potke, T. Seidl: “Effective Similarity

Search on Voxelized CAD Objects”. Proc. 8th Conf. On Database Systems for Advanced

Applications, Japan, 2003.

Y. Liu, F. Dellaert: “A Classification Based Similarity Metric for 3D Image Retrieval”. Proc.

of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 1998.

D. A. Keim: “Efficient Geometry-based Similarity Search of 3D Spatial Databases”.

Proceedings of the 199 ACM SIGMOD International Conf. on Management of Data. ACM

Press, NY, pp 419-430, 1999.

J.-S. Yeh, D.-Y. Chen, B.-Yu. Chen, M. Ouhyoung: “A Web-based Three-dimensional

Protein Retrieval System by Matching Visual Similarity”. Bioinformatics 2005 21: 3056-

, 2005.

Z. Geradts, H. Hardy, A. Poortman, J. Bijhold: “Evaluation of contents based image retrieval

methods for a database of logos on drug tablets”. Proceedings of SPIE Enabling Technologies

for Law Enforcement and Security. Vol. 4232, pp. 553-562, 2001.

M. Novotni, R. Klein: “Geometric 3D Comparison – an Application”. ECDL WS Generalized

Documents, 2001.

O. Ronneberger, H. Burkhardt, E. Schultz: “General-purpose Object Recognition in 3D

Volume Data Sets using Gray-Scale Invariants – Classification of Airborne Pollen-Grains

Recorded with a Confocal Laser Scanning Microscope”. Proceedings of the 16th International

Conference on Pattern Recognition, Quebec, Canada, September 2002.

M. Ankerst, G. Kastenmueller, H.-P. Kriegel, T. Seid: “3D Shape Histograms for Similarity

Search and Classification in Spatial Databases”. SSD, 1999.

M. Hilaga, Y. Shinagawa, T. Kohmura, T. L. Kunii: “Topology Matching for Fully Automatic

Similarity Estimation of 3D Shapes”. ACM SIGGRAPH, 2001.

H. Laga, H. Takashi, M. Nakajima: “Geometry Image Matching for Similarity Estimation of

D Shapes”. CGI'04 pp. 490-496, 2004.

H. Sundar, D. Sliver, N. Gagvani, S. Dickinson: “Skeleton Based Shape Matching and

Retrieval”. International Conf. on Shape Modeling and Applications 2003, May 12 - 15, 2003.

M. Elad, A. Tal, S. Ar.: “Directed Search in a 3D Objects Database Using SVM”. HPL-2000-

(R.1), 2000.

C. -S. Wang, J. -F. Chen, L. -P. Hung, C. -H. Huang.: “Efficient Indexing and Retrieval

Scheme for VRML Database”. IC CSCW, 2004.

C. M. Cyr, B. B. Kimia: “3D Object Recognition Using Shape Similarity-Based Aspect

Graph”. ICCV, 2001.

D. -Y. Chen, X. -P. Tian, Y. -T. Shen, M. Ouhyoung: “On Visual Similarity Based 3D Model

Retrieval”. Eurographics, 2003.

D. V. Vranić, D. Saupe: “3D Shape Descriptor Based on 3D Fourier Transform”. Proceedings

of the EURASIP Conference on Digital Signal Processing for Multimedia Communications

and Services (ECMCS 2001), Budapest, Hungary, Sept. 2001.

D. V. Vranić: “3D Model Retrieval”. Ph.D. Dissertation, Universität Leipzig, 2004.

S. Akbar, J. Küng, R. Wagner: “Multi-feature based 3D Model Similarity Retrieval”.

International Conference on Computing and Informatics, Malaysia, 2006.

E. Paquet, M. Rioux, A. Murching, T. Naveen, A. Tabatai: “Description of Shape Information

for 2-D and 3-D Objects”. Signal Processing Image Comm., Elsevier Science B.V., 2000.

I. Atmosukarto, W. K. Leow, Z. Huang: “Feature Combination and Relevance Feedback for

D Model Retrieval”. MMM, pp. 334-339, 11th International Multimedia Modeling

Conference, Australia, 2005.

Q. Iqbal, J.K. Aggarwal: “Feature Integration, Multi-image Queries and RF in Image

Retrieval”. 6th Int’l Conf. on Visual Information System 2003, pp. 467-474, Florida 2003.

B. Bustos, D. Keim, D. Saupe, T. Schrech, D. Vranić: “Automatic Selection and Combination

of Descriptors for Effective 3D Similarity Search”. IEEE Sixth International Symposium on

Multimedia Software Engineering (ISMSE'04) pp. 514-521, 2004.

P. J. Kostelec, D. R. Rockmore: “S2Kit: A Lite Version of SpharmonicKit”. Department of

Mathematics, Dartmouth College, 2004.

F. Murtagh: The source code of Principal Component Analysis, The Departement of

Statistics, Carnegie Mellon University. http://lib.stat.cmu.edu/multi/pca.c. Last Access:

December 2005.

S. Akbar, J. Küng, R. Wagner: “Multi-feature Integration on 3D Model Similarity Retrieval”.

The 1st International Conference on Digital Information Management (ICDIM), India 2006.

Princeton Shape Retrieval and Analysis Group: “3D Model Search Engine”.

http://shape.cs.princeton.edu /search.html. Last access: September 2005.

D. V. Vranić: ”Content-based Classification of 3D-models by Capturing spatial

Characteristics”. http://merkur01.inf. uni-konstanz.de/CCCC/. Last access: September 2005.

Utrecht University Object Database, http://www.cs.uu.nl/ centers/give/imaging/3drecog/

dmatching.html. Last Access: September 2005.

J.J. Rocchio Jr.: “Relevance Feedback in Information Retrieval”, The SMART System, G.

Salton, ed., pp. 313-323, Prentice Hall, 1971.

Georgy Gimel'farb. CBIR: Indexing and Retrieval. http://www.cs.auckland.ac.nz/

compsci708s1c/lectures/Glect-html/topic5c708FSC.htm. 2005.

X. S. Zhou, T. S. Huang: “Small Sample Learning during Multimedia Retrieval using

BiasMap”. CVPR (1). pp 11-17. 2001.

H. Y. Bang, T. Chen: “Feature Space Warping: An Approach to Relevance Feedback”. In

ICIP 2002.

A. D. Bimbo, P. Pala: “Content-Based Retrieval of 3D Models”. ACM Transactions on

Multimedia Computing, Comm. and Applications, Vol. 2, No. 1, pp. 20-43, February 2006.

K. Porkaew, K. Chakrabarti: “Query refinement for multimedia similarity retrieval in

MARS”, Proceedings of the 7th ACM int’l conference on Multimedia, pp: 235 – 238. 1999.

X. Jin, J. C. French. “Improving Image Retrieval Effectiveness via Multiple Queries”. Proc.

of the 1st ACM international workshop on Multimedia databases, pp. 86-93, 2003.

Downloads

Published

2007-07-25

How to Cite

AKBAR, S. ., KÜNG, J., & WAGNER, R. (2007). MULTI-FEATURE INTEGRATION WITH RELEVANCE FEEDBACK ON 3D MODEL SIMILARITY RETRIEVAL. Journal of Mobile Multimedia, 3(3), 235–254. Retrieved from https://journals.riverpublishers.com/index.php/JMM/article/view/4899

Issue

Section

Articles