Spectrum Sharing and Dynamic Spectrum Management Techniques in 5G and Beyond Networks: A Survey
DOI:
https://doi.org/10.13052/jmm1550-4646.17133Keywords:
Spectrum, Dynamic Spectrum Management (DSM), Spectrum Sharing, Machine Learning, Spectral Efficiency, Spectrum Allocation.Abstract
Advancing technologies and bandwidth-hungry applications have increased mobile data traffic in the radio spectrum. Utilizing spectrum is one of the indispensable performance metric seconded by techniques to increase the bandwidth. Spectrum efficient techniques have always been a part of all the generations of wireless communication. It has considered being of utmost criticality with 5G networks. The spectrum sharing and management demand contributions from technical research groups as well as regulatory bodies. Recently, many technologies proved their potentials to invoke efficient spectrum utilization. Different approaches have been considered including cognitive radio, machine learning for dynamic spectrum management, spectrum sharing, spectrum harmonization, spectrum identification strategies, etc. Efficient technology is very important in order to have high spectral as well as energy efficiency. It is also important from a cost-efficiency perspective. Therefore, this paper presents an overview of the various spectrum sharing and management aspects. This comparative study is motivated to provide a clear picture to design a spectrum efficient system for 5G and beyond the network.
Downloads
References
Ericsson. (2019). Ericsson Mobility Report. [Online]. Available: https://www.ericsson.com/en/mobility-report/reports/june-2019.
Cerwall, Patrik, et al. “Ericsson Mobility Report June 2020.” Ericsson.com, Fredrik Jejdling, 19 June 2020, www.ericsson.com/en/mobility-report/reports/june-2020.
Flynn, Kevin. “A Global Partnership.” Release 15, 2017, www.3gpp.org/release-15.
ITU-, R. “Managing the Radio-Frequency Spectrum for the World.” ITU, Dec. 2019, www.itu.int/en/mediacentre/backgrounders/Pages/itu-r-managing-the-radio-frequency-spectrum-for-the-world.aspx.
ITU R M Report. www.itu.int/dms pub/itu-r/opb/rep/R-REP-M.2243-2011-PDF-E.pdf
Abecassis, David, et al. “Report: International Comparison: Licensed, Unlicensed, and Shared Spectrum, 2017-2020.” CTIA, Jan. 2020, www.ctia.org/news/report-international-comparison-licensed-unlicensed-and-shared-spectrum-2017-2020.
FCC. “Radio Spectrum Allocation.” Federal Communications Commission, 19 June 2020, www.fcc.gov/engineering-technology/policy-and-rules-division/general/radio-spectrum-allocation.
Ericsson. “5G Spectrum Harmonization - Mobility Report.” Ericsson.com, 6 May 2020, www.ericsson.com/en/mobility-report/articles/the-need-for-5g-spectrum-harmonization-wef-edition.
GSA. “Spectrum for Terrestrial 5G Networks.” GSA, 2 Aug. 2018, gsacom.com/paper/spectrum-terrestrial-5g-networks/.
3GPP. “A Global Partnership.” Specifications Home, www.3gpp.org/specifications/specifications.
Flynn, Kevin. “A Global Partnership.” Release 16, www.3gpp.org/release-16.
Liu, W. Xiao, and A. C. K. Soong, “Dense networks of small cells,” in Design and Deployment of Small Cell Networks, A. Anpalagan, M. Bennis, and R. Vannithamby, Eds. Cambridge University Press, 2016.
Yang, Chungang, et al. “Advanced Spectrum Sharing in 5G Cognitive Heterogeneous Networks.” IEEE Wireless Communications, vol. 23, no. 2, 2016, pp. 94–101., doi:10.1109/mwc.2016.7462490.
“Regulations.” Dynamic Spectrum Alliance, 1 Sept. 2020, dynamicspectrumalliance.org/regulations/.
Saha, Rony Kumer. “Realization of Licensed/Unlicensed Spectrum Sharing Using EICIC in Indoor Small Cells for High Spectral and Energy Efficiencies of 5G Networks.” Energies, vol. 12, no. 14, 2019, p. 2828., doi:10.3390/en12142828.
Tehrani, R.H.; Vahid, S.; Triantafyllopoulou, D.; Lee, H.; Moessner, K. Licensed spectrum sharing schemes for mobile operators: A survey and outlook. IEEE Commun. Surv. Tutor. 2016, 18, 2591–2623.
D. Guiducci et al., "Sharing under licensed shared access in a live LTE network in the 2.3–2.4 GHz band end-to-end architecture and compliance results," 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Piscataway, NJ, 2017, pp. 1-10.
Holland et al., "5G Needs Database-Driven Spectrum Sharing!," 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Seoul, Korea (South), 2018, pp. 1-10.
C. Suarez-Rodriguez, B. A. Jayawickrama, F. Bader, E. Dutkiewicz and M. Heimlich, "REM-based handover algorithm for nextgeneration multi-tier cellular networks," 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, 2018, pp. 1-6.
Y. Zhao, Z. Hong, Y. Luo, G. Wang and L. Pu, "Prediction-Based Spectrum Management in Cognitive Radio Networks," in IEEE Systems Journal, vol. 12, no. 4, pp. 3303-3314, Dec. 2018.
T. Fujii, "Smart Spectrum Management for V2X," 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Seoul, Korea (South), 2018, pp. 1-8.
Zhang, Jianzhao, et al. “From Dynamic Spectrum Management to Smart Spectrum Management.” 2019 IEEE 5th International Conference on Computer and Communications (ICCC), 2019, doi:10.1109/iccc47050.2019.9064314.
Yucek, Tevfik, and Huseyin Arslan. “A Survey of Spectrum Sensing Algorithms for Cognitive Radio Applications.” IEEE Communications Surveys & Tutorials, vol. 11, no. 1, 2009, pp. 116–130., doi:10.1109/surv.2009.090109.
Zhao, Qing, and B.m. Sadler. “A Survey of Dynamic Spectrum Access.” IEEE Signal Processing Magazine, vol. 24, no. 3, 2007, pp. 79–89., doi:10.1109/msp.2007.361604.
Liang, Ying Chang. Dynamic Spectrum Management. Springer Singapore, 2020.