Predicting Vasovagal Syncope for Paraplegia Patients Using Average Weighted Ensemble Technique
DOI:
https://doi.org/10.13052/jmm1550-4646.1817Keywords:
Vasovagal syncope, ensemble techniqueAbstract
Vasovagal syncope (VVS) refers to fainting of people with a drop in blood flow to the brain more serious disease in paraplegia patients. Precognitive diagnoses are characterized by lightheadedness, nausea, severe fatigue, and an elevated heart rate. As a result, it’s important to seek care as soon as possible after experiencing syncope. Since receiving a correct diagnosis and appropriate care, the majority of patients may avoid complications with syncope. Syncope appears to be a sign of COVID 19 in people with coronary artery disease. Furthermore, a sudden heart attack might result in acute syncope. In a few circumstances, machine learning classification techniques may not be precise. For paraplegia patients, prediction vasovagal syncope needs more precise results in order to save their lives. The aim of this paper is to use the ensemble technique to improve the accuracy of conventional machine learning algorithms. EEG (ElectroEncephaloGram) brainwave dataset from kaggle is used to implement it. The accuracy of the proposed AWET algorithm is 82%. It improves the accuracy by 17% compare to Support Vector Machine, Random Forest, Naive Bayes, and MultiLayer Perceptron classifiers.
Downloads
References
Ilut, C., Valchev, R., & Vincent, N. (2020). Paralyzed by fear: Rigid and discrete pricing under demand uncertainty. Econometrica, 88(5), 1899–1938.
Chang, J. E., Kim, H., Lee, J. M., Min, S. W., Won, D., Jun, K., & Hwang, J. Y. (2019). A prospective, randomized comparison of the LMA-protectorTM
and i-gelTM
in paralyzed, anesthetized patients. BMC anesthesiology, 19(1), 1–7.
Dastidar, D. G., Gupta, A., Das, D., & Tripathi, B. (2019). Gitelmans Syndrome-A Rare Cause of Recurrent Syncope. The Journal of the Association of Physicians of India, 67(9), 92–93.
Reed, M. J. (2019). Approach to syncope in the emergency department. Emergency Medicine Journal, 36(2), 108–116.
Probst, M. A., Gibson, T., Weiss, R. E., Yagapen, A. N., Malveau, S. E., Adler, D. H., … & Sun, B. C. (2020). Risk stratification of older adults who present to the emergency department with syncope: the FAINT score. Annals of emergency medicine, 75(2), 147–158.
Aksu, T., Guler, T. E., Mutluer, F. O., Bozyel, S., Golcuk, S. E., & Yalin, K. (2019). Electroanatomic-mapping-guided cardioneuroablation versus combined approach for vasovagal syncope: a cross-sectional observational study. Journal of Interventional Cardiac Electrophysiology, 54(2), 177–188.
El-Hussein, M. T., & Cuncannon, A. (2021). Syncope in the emergency department: a guide for clinicians. Journal of Emergency Nursing, 47(2), 342–351.
Aksu, T., Padmanabhan, D., Shenthar, J., Yalin, K., Gautam, S., Valappil, S. P., & Gopinathannair, R. (2021). The benefit of cardioneuroablation to reduce syncope recurrence in vasovagal syncope patients: a case-control study. Journal of Interventional Cardiac Electrophysiology, 1–10.
Chen, T., Hanna, J., Walsh, E. E., Falsey, A. R., Laguio-Vila, M., & Lesho, E. (2020). Syncope, near syncope, or nonmechanical falls as a presenting feature of COVID-19. Annals of Emergency Medicine, 76(1), 115.
Oates, C. P., Turagam, M. K., Musikantow, D., Chu, E., Shivamurthy, P., Lampert, J., … & Koruth, J. S. (2020). Syncope and presyncope in patients with COVID-19. Pacing and Clinical Electrophysiology, 43(10), 1139–1148.
Dandekar, R., & Barbastathis, G. (2020). Neural Network aided quarantine control model estimation of COVID spread in Wuhan, China. arXiv preprint arXiv:2003.09403.
Xu, H., Yan, C., Fu, Q., Xiao, K., Yu, Y., Han, D., & Cheng, J. (2020). Possible environmental effects on the spread of COVID-19 in China. Science of the Total Environment, 731, 139211.
Doodnauth, A. V., Jallad, A., Rizk, D., Valery, E., & McFarlane, S. I. (2021). Syncope Associated with Sinus Nodal Dysfunction in a COVID-19 Patient: A Case Report and Review of the Literature. American journal of medical case reports, 9(4), 263.
Tavazzi, G., Pellegrini, C., Maurelli, M., Belliato, M., Sciutti, F., Bottazzi, A., & Arbustini, E. (2020). Myocardial localization of coronavirus in COVID-19 cardiogenic shock. European journal of heart failure, 22(5), 911–915.
Lauridsen, M. D., Butt, J. H., Østergaard, L., Møller, J. E., Hassager, C., Gerds, T., & Fosbøl, E. L. (2020). Incidence of acute myocardial infarction-related cardiogenic shock during corona virus disease 19 (COVID-19) pandemic. IJC Heart & Vasculature, 31, 100659.
Hasan, S. W., Ibrahim, Y., Daou, M., Kannout, H., Jan, N., Lopes, A., & Yousef, A. F. (2021). Detection and quantification of SARS-CoV-2 RNA in wastewater and treated effluents: Surveillance of COVID-19 epidemic in the United Arab Emirates. Science of the Total Environment, 764, 142929.
Salzberger, B., Glück, T., & Ehrenstein, B. (2020). Successful containment of COVID-19: the WHO-Report on the COVID-19 outbreak in China.
Olson, D. L., & Lauhoff, G. (2019). Descriptive data mining. In Descriptive Data Mining (pp. 129–130). Springer, Singapore.
Palmisano, P., Dell’Era, G., Pellegrino, P. L., Ammendola, E., Ziacchi, M., Guerra, F. & Accogli, M. (2021). Causes of syncopal recurrences in patients treated with permanent pacing for bradyarrhythmic syncope: Findings from the SYNCOPACED registry. Heart rhythm, 18(5), 770–777.
Biffl, W. L., Ferkich, A., Biffl, S. E., & Dandan, T. (2020). Syncope,“mechanical falls”, and the trauma surgeon. Journal of Trauma and Acute Care Surgery, 89(3), e64–e68.
Lee, J. Z., Mulpuru, S. K., & Shen, W. K. (2019). The Role of Pacing in Elderly Patients with Unexplained Syncope. Current Cardiovascular Risk Reports, 13(6), 1–8.
Van Dijk, J. G., Ghariq, M., Kerkhof, F. I., Reijntjes, R., Van Houwelingen, M. J., Van Rossum, I. A., & Benditt, D. G. (2020). Novel methods for quantification of vasodepression and cardioinhibition during tilt-induced vasovagal syncope. Circulation research, 127(5), e126–e138.
Aksu, T., Guler, T. E., Bozyel, S., & Yalin, K. (2020). Selective vagal innervation principles of ganglionated plexi: step-by-step cardioneuroablation in a patient with vasovagal syncope. Journal of Interventional Cardiac Electrophysiology, 1–6.
Piotrowski, R., Zuk, A., Baran, J., Sikorska, A., Krynski, T., & Kulakowski, P. (2020). P1096 Cardioneuroablation changes the type of vaso-vagal response in patients with asystolic reflex syncope. EP Europace, 22(Supplement_1), euaa162–303.
Sheldon, R. S., & Sandhu, R. K. (2019). The search for the genes of vasovagal syncope. Frontiers in cardiovascular medicine, 6, 175.
Turagam, M. K., Gopinathannair, R., Park, P. H., Tummala, R. V., Vasamreddy, C., Shah, A., … & Lakkireddy, D. R. (2020). Safety and efficacy of leadless pacemaker for cardioinhibitory vasovagal syncope. Heart rhythm, 17(9), 1575–1581.
Ng, J., Sheldon, R. S., Ritchie, D., Raj, V., & Raj, S. R. (2019). Reduced quality of life and greater psychological distress in vasovagal syncope patients compared to healthy individuals. Pacing and Clinical Electrophysiology, 42(2), 180–188.
Wang, Y. Y., Du, J. B., & Jin, H. F. (2020). Differential diagnosis of vasovagal syncope and postural tachycardia syndrome in children. World Journal of Pediatrics, 1–4.
Roberts, P. R., Pepper, C., Rinaldi, C. A., Bates, M. G., Thornley, A., Somani, R., … & Zaidi, A. (2019). The use of a single chamber leadless pacemaker for the treatment of cardioinhibitory vasovagal syncope. IJC Heart & Vasculature, 23, 100349.
Furlan, R., Heusser, K., Minonzio, M., Shiffer, D., Cairo, B., Tank, J., … & Barbic, F. (2019). Cardiac and vascular sympathetic baroreflex control during orthostatic pre-syncope. Journal of clinical medicine, 8(9), 1434.
Biffl, W. L., Ferkich, A., Biffl, S. E., & Dandan, T. (2020). Syncope,“mechanical falls”, and the trauma surgeon. Journal of Trauma and Acute Care Surgery, 89(3), e64–e68.
Aksu, T., Guler, T. E., Mutluer, F. O., Bozyel, S., Golcuk, S. E., & Yalin, K. (2019). Electroanatomic-mapping-guided cardioneuroablation versus combined approach for vasovagal syncope: a cross-sectional observational study. Journal of Interventional Cardiac Electrophysiology, 54(2), 177–188.
Wang, Y. Y., Du, J. B., & Jin, H. F. (2020). Differential diagnosis of vasovagal syncope and postural tachycardia syndrome in children. World Journal of Pediatrics, 1–4.
John, L. A., Mullis, A., Payne, J., Tung, R., Aksu, T., & Winterfield, J. R. (2021). Cardioneuroablation for cardioinhibitory vasovagal syncope. Journal of Cardiovascular Electrophysiology.
Subasi, A., Tuncer, T., Dogan, S., Tanko, D., & Sakoglu, U. (2021). EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier. Biomedical Signal Processing and Control, 68, 102648.
Abdulla, S., Diykh, M., Laft, R. L., Saleh, K., & Deo, R. C. (2019). Sleep EEG signal analysis based on correlation graph similarity coupled with an ensemble extreme machine learning algorithm. Expert Systems with Applications, 138, 112790.
Ren, W., & Han, M. (2019). Classification of EEG signals using hybrid feature extraction and ensemble extreme learning machine. Neural Processing Letters, 50(2), 1281–1301.
Avots, E., Jermakovs, K., Bachmann, M., Paeske, L., Ozcinar, C., & Anbarjafari, G. (2021). Ensemble approach for detection of depression using EEG features. arXiv preprint arXiv:2103.08467.
Chen, Y., Chang, R., & Guo, J. (2021). Emotion Recognition of EEG Signals Based on the Ensemble Learning Method: AdaBoost. Mathematical Problems in Engineering, 2021.
Shen, F., Peng, Y., Kong, W., & Dai, G. (2021). Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition. Sensors, 21(4), 1262.
Rajeswari C., Sathiyabhama B.,Devendiran S., Manivannan K.A Gear fault identification using wavelet transform, rough set based GA, ANN and C4.5 algorithm.Procedia Engineering, Vol – 2 PP: 338–344, DOI: 10.1016/j.procs.2010.11.044,2014
Zheng, L., Sun, W., Liu, S., Liang, E., Du, Z., Guo, J. … & Yao, Y. (2020). The Diagnostic Value of Cardiac Deceleration Capacity in Vasovagal Syncope. Circulation: Arrhythmia and Electrophysiology, 13(12), e008659.
Sheldon, R. S., Lei, L., Guzman, J. C., Kus, T., Ayala-Paredes, F. A., Angihan, J., … & Raj, S. R. (2019). A proof of principle study of atomoxetine for the prevention of vasovagal syncope: the Prevention of Syncope Trial VI. EP Europace, 21(11), 1733–1741.
Wen, C., Wang, S., Zou, R., Wang, Y., Tan, C., Xu, Y., & Wang, C. (2020). Duration of treatment with oral rehydration salts for vasovagal syncope in children and adolescents. The Turkish Journal of Pediatrics, 62(5), 820–825.
Chen, J. X., Zhang, P. W., Mao, Z. J., Huang, Y. F., Jiang, D. M., & Zhang, Y. N. (2019). Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks. IEEE Access, 7, 44317–44328.
Yaguna, C. E. (2019). New constraints on xenonphobic dark matter from DEAP-3600. Journal of Cosmology and Astroparticle Physics, 2019(04), 041.
Acharya, U. R., Hagiwara, Y., Deshpande, S. N., Suren, S., Koh, J. E. W., Oh, S. L., & Lim, C. M. (2019). Characterization of focal EEG signals: a review. Future Generation Computer Systems, 91, 290–299.
Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., & Zhao, X. (2019). A comprehensive review of EEG-based brain–computer interface paradigms. Journal of neural engineering, 16(1), 011001.
Vinodhini, V., Sathiyabhama, B., Sankar, S., & Somula, R. (2020). A Deep Structured Model for Video Captioning. International Journal of Gaming and Computer-Mediated Simulations (IJGCMS), 12(2), 44–56.
Li, W., Jayagopal, L. A., & Taraschenko, O. (2019). Ictal asystole with isolated syncope: A case report and literature review. Epilepsy & behavior case reports, 11, 47–51.
Mennella, R., Vilarem, E., & Grèzes, J. (2020). Rapid approach-avoidance responses to emotional displays reflect value-based decisions: Neural evidence from an EEG study. NeuroImage, 222, 117253.
Santhoshi, P. M., & Thirugnanam, M. (2019). An Automated Framework for Prediction of Falls in Cardiomyopathy People. In ICTMI 2017 (pp. 1–15). Springer, Singapore.
Khateeb, M., Anwar, S. M., & Alnowami, M. (2021). Multi-Domain Feature Fusion for Emotion Classification Using DEAP Dataset. IEEE Access, 9, 12134–12142.
Chao, H., Dong, L., Liu, Y., & Lu, B. (2019). Emotion recognition from multiband EEG signals using CapsNet. Sensors, 19(9), 2212.
Ullah, H., Uzair, M., Mahmood, A., Ullah, M., Khan, S. D., & Cheikh, F. A. (2019). Internal emotion classification using EEG signal with sparse discriminative ensemble. IEEE Access, 7, 40144–40153.
Cimtay, Y., & Ekmekcioglu, E. (2020). Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition. Sensors, 20(7), 2034.
Pane, E. S., Wibawa, A. D., & Purnomo, M. H. (2019). Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters. Cognitive processing, 20(4), 405–417.
Rajeswari C., Sathiyabhama B.,Devendiran S., Manivannan K. Bearing fault diagnosis using wavelet packet transform, hybrid PSO and support vector machine, Procedia Engineering, Vol. 97(1), PP: 1772–1783, 2014.
Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14(2), 241–258.
Dou, J., Yunus, A. P., Bui, D. T., Merghadi, A., Sahana, M., Zhu, Z., & Pham, B. T. (2020). Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides, 17(3), 641–658.
Mosavi, A., Hosseini, F. S., Choubin, B., Goodarzi, M., Dineva, A. A., & Sardooi, E. R. (2021). Ensemble boosting and bagging based machine learning models for groundwater potential prediction. Water Resources Management, 35(1), 23–37.
N. Kumar, K. Khaund and SM. Hazarika, “Bispectral Analysis of EEG for Emotion Recognition,” Procedia Computer Science. vol. 84, pp. 31–35, 2016, 10.1016/j.procs.2016.04.062.
J. Atkinson and D. Campos, “Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers,” Expert Systems with Applications, 2015, 47.10.1016/j.eswa.2015.10.049.
S. Stober, A. Sternin, and A. M. Owen, “Deep Feature Learning for EEG Recordings,” Computer Science, vol. 165, pp. 23–31, 2015.
S. Alhagry, A. Aly, A. Reda, “Emotion Recognition based on EEG using LSTM Recurrent Neural Network,” International Journal of Advanced Computer Science & Applications, vol. 8, no. 10, 2017, 10.14569/IJACSA.2017.081046.
Mehmood, R. M., Du, R., & Lee, H. J. (2017). Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors. Ieee Access, 5, 14797–14806.
Horlings, R., Datcu, D., & Rothkrantz, L. J. (2008, June). Emotion recognition using brain activity. In Proceedings of the 9th international conference on computer systems and technologies and workshop for PhD students in computing (pp. II–1).