Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media

Authors

  • Kais Ammar Mines ParisTech, Centre des Matériaux/CNRS UMR 7633 BP 87, F-91003 Evry cedex
  • Benoît Appolaire LSG2M, École des Mines de Nancy Parc de Saurupt, F-54042 Nancy cedex
  • Georges Cailletaud Mines ParisTech, Centre des Matériaux/CNRS UMR 7633 BP 87, F-91003 Evry cedex
  • Samuel Forest Mines ParisTech, Centre des Matériaux/CNRS UMR 7633 BP 87, F-91003 Evry cedex

DOI:

https://doi.org/10.13052/EJCM.18.485-523

Keywords:

phase field, elastoplasticity, homogenization

Abstract

A general constitutive framework is proposed to incorporate linear and nonlinear mechanical behaviour laws into a standard phase field model. In the diffuse interface region where both phases coexist, two mixture rules for strain and stress are introduced, which are based on the Voigt/Taylor and Reuss/Sachs well-known homogenization schemes and compared to the commonly used mixture rules in phase field models. Finite element calculations have been performed considering an elastoplastic precipitate growing in an elastic matrix in order to investigate the plastic accommodation processes.

Downloads

Download data is not yet available.

References

Appolaire B., Gautier E., “ Modelling of phase transformations in titanium alloys with a phase

field model”, Lecture Notes in Computational Science & Engineering, vol. 32, p. 196-201,

Barbe F., Quey R., Taleb L., Souza de Cursi E., “ Numerical modelling of the plasticity induced

during diffusive transformation. An ensemble averaging approach for the caseof random

arrays of nuclei”, European Journal of Mechanics A/Solids, vol. 27, p. 1121-1139, 2008.

Benallal A., Billardon R., Doghri I., “ An integration algorithm and the corresponding consistent

tangent operator for fully coupled elastoplastic and damage equations”, Comm. Appl. Num.

Meth., vol. 4, p. 731-740, 1988.

Besson J., Cailletaud G., Chaboche J.-L., Forest S., Mécanique non linéaire des matériaux,

Hermès Sciences, France, 2001.

Boussinot G., Finel A., Le Bouar Y., “ Phase-field modeling of bimodal microstructures in

nickel-based superalloys”, Acta Materialia, vol. 57, p. 921-931, 2009.

Cahn J., Larche F., “ A simple model for coherent equilibrium”, Acta Metall., vol. 32, n 11,

p. 1915-1923, 1984.

Cha P.-R., Kim J., Kim W.-T., Kim S., “ Effect of transformation induced stress and plastic

deformation on austenite/ferrite transition in low carbon steel”, Plasticity 2009, p. 376-378,

Coleman B., Gurtin M., “ Thermodynamics with internal variables”, The Journal of Chemical

Physics, vol. 47, p. 597-613, 1967.

Coleman B., Noll W., “ The thermodynamics of elastic materials with heat conduction andviscosity”,

Arch. Rational Mech. and Anal., vol. 13, p. 167-178, 1963.

Eiken J., Böttger B., Steinbach I., “ Multiphase–field approach for multicomponent alloys with

extrapolation scheme for numerical application”, Physical Review E, vol. 73, p. 066122-1-9,

Eshelby J., “ The determination of the elastic field of an ellispoidal inclusion, and related problems”,

Proceedings of the Royal Society of London. Series A, vol. 241, p. 376-396, 1957.

Eshelby J., “ The elastic field outside an ellipsoidal inclusion”, Proceedings of the Royal Society

of London. Series A, vol. 252, p. 561-569, 1959.

Foerch R., Besson J., “ Large scale object oriented finite element code design”, Comput. Methods

Appl. Mech. Eng., vol. 142, p. 165-187, 1997.

Forest S., “ The micromorphic approach to plasticity and diffusion”, in D. Jeulin, S. Forest (eds),

Continuum Models and Discrete Systems 11, Proceedings of theinternational conference

CMDS11, Les Presses de l’Ecole des Mines de Paris, Paris, France, p. 105-112, 2008.

Forest S., “ The micromorphic approach for gradient elasticity, viscoplasticity and damage”,

ASCE Journal of Engineering Mechanics, vol. 135, p. 117-131, 2009.

Ganghoffer J., Simonsson K., Denis S., Gautier E., Sjöström S., Simon A., “ Martensitic transformation

plasticity simulations by finite elements”, Journal de Physique IV (France), vol.

, p. C3-215-220, 1994.

Gaubert A., Finel A., Le Bouar Y., Boussinot G., “ Viscoplastic phase field modellling of rafting

in Ni base superalloys”, Continuum Models and Discrete Systems CMDS11, Mines Paris

Les Presses, p. 161-166, 2008.

Gaubert A., Le Bouar Y., Finel A., “ Coupling phase field and visco–plasticity to study rafting

in Ni–base superalloys”, Philosophical Magazine, 2009.

Germain P., Nguyen Q.-S., Suquet P., “ Continuum Thermodynamics”, J. Appl. Mech., vol. 50,

p. 1010-1020, 1983.

Guo X., Shi S., Ma X., “ Elastoplastic phase field model for microstructure evolution”, Applied

Physics Letters, vol. 87, p. 221910-1-3, 2005.

Guo X., Shi S., Zhang Q., Ma X., “ An elastoplastic phase-field model for the evolution of hydride

precipitation in zirconium, Part I: smooth specimens”, Journal of Nuclear Materials,

vol. 378, p. 110-119, 2008.

Gurtin M., “ Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce

balance”, Physica D, vol. 92, p. 178-192, 1996.

Jeulin D., Ostoja-Starzewski M., Mechanics of Random and Multiscale Microstructures, CISM

Courses and Lectures No. 430, Udine, Springer Verlag, 2001.

Khachaturyan A., Theory of Structural Transformations in Solids, John Wiley & Sons, New

York, 1983.

Kim S., Kim W., Suzuki T., “ Interfacial compositions of solid and liquid in a phase–field

model with finite interface thickness for isothermal solidification in binary alloys”, Physical

Review E, vol. 58, n 3, p. 3316-3323, 1998.

Kim S., Kim W., Suzuki T., “ Phase–field model for binary alloys”, Physical Review E, vol. 60,

n 6, p. 7186-7197, 1999.

Le bouar Y., Loiseau A., Khachaturyan A., “ Origin of chessboard–like structures in decomposing

alloys. Theoretical model and computer simulation”, Acta Metallurgica, vol. 46, n 8,

p. 2777-2788, 1998.

Lemaitre J., Chaboche J.-L., Mechanics of Solid Materials, University Press, Cambridge, UK,

Nakajima K., Apel M., Steinbach I., “ The role of carbon diffusion in ferrite on the kinetics

of cooperative growth of pearlite: A multi–phase field study”, Acta Materialia, vol. 54,

p. 3665-3672, 2006.

Nemat-Nasser S., Hori M., Micromechanics: Overall Properties of heterogeneous Solids, 2nd

edition edn, Elsevier Science Publishers, 1999.

Onuki A., “ Ginzburg-Landau Approach to Elastic Effects in the Phase Separation of Solids”,

Journal of the Physical Society of Japan, vol. 58, p. 3065-3068, 1989.

Qu J., M. C., Fundamentals of micromechanics of solids, John Wiley & Sons Inc, Hoboken,

Rodney D., Le bouar Y., Finel A., “ Phase field methods and dislocations”, Acta Materialia,

vol. 51, p. 17-30, 2003.

Simo J., Hughes T., Computational inelasticity, Springer Verlag, New York, 1998.

Steinbach I., Apel M., “ Multi phase field model for solid state transformation with elastic

strain”, Physica D, vol. 217, p. 153-160, 2006.

Steinbach I., Apel M., “ The influence of lattice strain on pearlite formation in Fe–C”, Acta

Materialia, vol. 55, p. 4817-4822, 2007.

Suquet P., Continuum micromechanics, CISM Courses and Lectures No. 377, Udine, Springer

Verlag, Berlin, 1997.

T. Uehara T., Tsujino T., Ohno N., “ Elasto-plastic simulation of stress evolution during grain

growth using a phase field model”, Journal of Crystal Growth, vol. 300, p. 530-537, 2007.

Ubachs R., Schreurs P., Geers M., “ A nonlocal diffuse interface model for microstructure

evolution of tin–lead solder”, Journal of the Mechanics and Physics of Solids, vol. 52,

p. 1763-1792, 2004.

Ubachs R., Schreurs P., Geers M., “ Phase field dependent viscoplastic behaviour of solder

alloys”, International Journal of Solids and Structures, vol. 42, p. 2533-2558, 2005.

Wang Y., Chen L.-Q., Khachaturyan A., “ Kinetics of strain-induced morphological transformation

in cubic alloys with a miscibility gap”, Acta Metallurgica et Materialia, vol. 41,

p. 279-296, 1993.

Williams R. O., “ The Calculation of Coherent Phase Equilibria”, Calphad, vol. 8, n 1, p. 1-14,

Yamanaka A., Takaki T., Tomita Y., “ Elastoplastic phase-field simulation of self- and plastic

accomodations in cubic!tetragonal martensitic transformation”, Materials Science &

Engineering A, vol. 491, p. 378-384, 2008.

Zhou N., Shen C., Mills M., Wang Y., “ Contributions from elastic inhomogeneity and from

plasticity to

rafting in single-crystal Ni-Al”, Acta Materialia, vol. 56, p. 6156-6173,

Downloads

Published

2009-10-07

How to Cite

Ammar, K. ., Appolaire, B. ., Cailletaud, G. ., & Forest, S. . (2009). Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. European Journal of Computational Mechanics, 18(5-6), 485–523. https://doi.org/10.13052/EJCM.18.485-523

Issue

Section

Original Article