Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media
DOI:
https://doi.org/10.13052/EJCM.18.485-523Keywords:
phase field, elastoplasticity, homogenizationAbstract
A general constitutive framework is proposed to incorporate linear and nonlinear mechanical behaviour laws into a standard phase field model. In the diffuse interface region where both phases coexist, two mixture rules for strain and stress are introduced, which are based on the Voigt/Taylor and Reuss/Sachs well-known homogenization schemes and compared to the commonly used mixture rules in phase field models. Finite element calculations have been performed considering an elastoplastic precipitate growing in an elastic matrix in order to investigate the plastic accommodation processes.
Downloads
References
Appolaire B., Gautier E., “ Modelling of phase transformations in titanium alloys with a phase
field model”, Lecture Notes in Computational Science & Engineering, vol. 32, p. 196-201,
Barbe F., Quey R., Taleb L., Souza de Cursi E., “ Numerical modelling of the plasticity induced
during diffusive transformation. An ensemble averaging approach for the caseof random
arrays of nuclei”, European Journal of Mechanics A/Solids, vol. 27, p. 1121-1139, 2008.
Benallal A., Billardon R., Doghri I., “ An integration algorithm and the corresponding consistent
tangent operator for fully coupled elastoplastic and damage equations”, Comm. Appl. Num.
Meth., vol. 4, p. 731-740, 1988.
Besson J., Cailletaud G., Chaboche J.-L., Forest S., Mécanique non linéaire des matériaux,
Hermès Sciences, France, 2001.
Boussinot G., Finel A., Le Bouar Y., “ Phase-field modeling of bimodal microstructures in
nickel-based superalloys”, Acta Materialia, vol. 57, p. 921-931, 2009.
Cahn J., Larche F., “ A simple model for coherent equilibrium”, Acta Metall., vol. 32, n 11,
p. 1915-1923, 1984.
Cha P.-R., Kim J., Kim W.-T., Kim S., “ Effect of transformation induced stress and plastic
deformation on austenite/ferrite transition in low carbon steel”, Plasticity 2009, p. 376-378,
Coleman B., Gurtin M., “ Thermodynamics with internal variables”, The Journal of Chemical
Physics, vol. 47, p. 597-613, 1967.
Coleman B., Noll W., “ The thermodynamics of elastic materials with heat conduction andviscosity”,
Arch. Rational Mech. and Anal., vol. 13, p. 167-178, 1963.
Eiken J., Böttger B., Steinbach I., “ Multiphase–field approach for multicomponent alloys with
extrapolation scheme for numerical application”, Physical Review E, vol. 73, p. 066122-1-9,
Eshelby J., “ The determination of the elastic field of an ellispoidal inclusion, and related problems”,
Proceedings of the Royal Society of London. Series A, vol. 241, p. 376-396, 1957.
Eshelby J., “ The elastic field outside an ellipsoidal inclusion”, Proceedings of the Royal Society
of London. Series A, vol. 252, p. 561-569, 1959.
Foerch R., Besson J., “ Large scale object oriented finite element code design”, Comput. Methods
Appl. Mech. Eng., vol. 142, p. 165-187, 1997.
Forest S., “ The micromorphic approach to plasticity and diffusion”, in D. Jeulin, S. Forest (eds),
Continuum Models and Discrete Systems 11, Proceedings of theinternational conference
CMDS11, Les Presses de l’Ecole des Mines de Paris, Paris, France, p. 105-112, 2008.
Forest S., “ The micromorphic approach for gradient elasticity, viscoplasticity and damage”,
ASCE Journal of Engineering Mechanics, vol. 135, p. 117-131, 2009.
Ganghoffer J., Simonsson K., Denis S., Gautier E., Sjöström S., Simon A., “ Martensitic transformation
plasticity simulations by finite elements”, Journal de Physique IV (France), vol.
, p. C3-215-220, 1994.
Gaubert A., Finel A., Le Bouar Y., Boussinot G., “ Viscoplastic phase field modellling of rafting
in Ni base superalloys”, Continuum Models and Discrete Systems CMDS11, Mines Paris
Les Presses, p. 161-166, 2008.
Gaubert A., Le Bouar Y., Finel A., “ Coupling phase field and visco–plasticity to study rafting
in Ni–base superalloys”, Philosophical Magazine, 2009.
Germain P., Nguyen Q.-S., Suquet P., “ Continuum Thermodynamics”, J. Appl. Mech., vol. 50,
p. 1010-1020, 1983.
Guo X., Shi S., Ma X., “ Elastoplastic phase field model for microstructure evolution”, Applied
Physics Letters, vol. 87, p. 221910-1-3, 2005.
Guo X., Shi S., Zhang Q., Ma X., “ An elastoplastic phase-field model for the evolution of hydride
precipitation in zirconium, Part I: smooth specimens”, Journal of Nuclear Materials,
vol. 378, p. 110-119, 2008.
Gurtin M., “ Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce
balance”, Physica D, vol. 92, p. 178-192, 1996.
Jeulin D., Ostoja-Starzewski M., Mechanics of Random and Multiscale Microstructures, CISM
Courses and Lectures No. 430, Udine, Springer Verlag, 2001.
Khachaturyan A., Theory of Structural Transformations in Solids, John Wiley & Sons, New
York, 1983.
Kim S., Kim W., Suzuki T., “ Interfacial compositions of solid and liquid in a phase–field
model with finite interface thickness for isothermal solidification in binary alloys”, Physical
Review E, vol. 58, n 3, p. 3316-3323, 1998.
Kim S., Kim W., Suzuki T., “ Phase–field model for binary alloys”, Physical Review E, vol. 60,
n 6, p. 7186-7197, 1999.
Le bouar Y., Loiseau A., Khachaturyan A., “ Origin of chessboard–like structures in decomposing
alloys. Theoretical model and computer simulation”, Acta Metallurgica, vol. 46, n 8,
p. 2777-2788, 1998.
Lemaitre J., Chaboche J.-L., Mechanics of Solid Materials, University Press, Cambridge, UK,
Nakajima K., Apel M., Steinbach I., “ The role of carbon diffusion in ferrite on the kinetics
of cooperative growth of pearlite: A multi–phase field study”, Acta Materialia, vol. 54,
p. 3665-3672, 2006.
Nemat-Nasser S., Hori M., Micromechanics: Overall Properties of heterogeneous Solids, 2nd
edition edn, Elsevier Science Publishers, 1999.
Onuki A., “ Ginzburg-Landau Approach to Elastic Effects in the Phase Separation of Solids”,
Journal of the Physical Society of Japan, vol. 58, p. 3065-3068, 1989.
Qu J., M. C., Fundamentals of micromechanics of solids, John Wiley & Sons Inc, Hoboken,
Rodney D., Le bouar Y., Finel A., “ Phase field methods and dislocations”, Acta Materialia,
vol. 51, p. 17-30, 2003.
Simo J., Hughes T., Computational inelasticity, Springer Verlag, New York, 1998.
Steinbach I., Apel M., “ Multi phase field model for solid state transformation with elastic
strain”, Physica D, vol. 217, p. 153-160, 2006.
Steinbach I., Apel M., “ The influence of lattice strain on pearlite formation in Fe–C”, Acta
Materialia, vol. 55, p. 4817-4822, 2007.
Suquet P., Continuum micromechanics, CISM Courses and Lectures No. 377, Udine, Springer
Verlag, Berlin, 1997.
T. Uehara T., Tsujino T., Ohno N., “ Elasto-plastic simulation of stress evolution during grain
growth using a phase field model”, Journal of Crystal Growth, vol. 300, p. 530-537, 2007.
Ubachs R., Schreurs P., Geers M., “ A nonlocal diffuse interface model for microstructure
evolution of tin–lead solder”, Journal of the Mechanics and Physics of Solids, vol. 52,
p. 1763-1792, 2004.
Ubachs R., Schreurs P., Geers M., “ Phase field dependent viscoplastic behaviour of solder
alloys”, International Journal of Solids and Structures, vol. 42, p. 2533-2558, 2005.
Wang Y., Chen L.-Q., Khachaturyan A., “ Kinetics of strain-induced morphological transformation
in cubic alloys with a miscibility gap”, Acta Metallurgica et Materialia, vol. 41,
p. 279-296, 1993.
Williams R. O., “ The Calculation of Coherent Phase Equilibria”, Calphad, vol. 8, n 1, p. 1-14,
Yamanaka A., Takaki T., Tomita Y., “ Elastoplastic phase-field simulation of self- and plastic
accomodations in cubic!tetragonal martensitic transformation”, Materials Science &
Engineering A, vol. 491, p. 378-384, 2008.
Zhou N., Shen C., Mills M., Wang Y., “ Contributions from elastic inhomogeneity and from
plasticity to
rafting in single-crystal Ni-Al”, Acta Materialia, vol. 56, p. 6156-6173,