Object-Oriented Programming Applied to the Finite Element Method Part II. Application to Material Behaviors
Keywords:
object-oriented languages, finite element method, optimization, constitutive equationsAbstract
This paper examines the application of C++ design patterns to the development of material constitutives equations to be used infinite element simulation softwares. All material behaviors use the same generic inteiface. Accordingly, the same governing principles can be applied to simple elasto-(visco)-plastic materials as well as single crystals, polycrystals and multiphased materials. As these models use numerous parameters, a generic optimization tools was also developed to adjust these parameters. Finally, a specific pre-processor can be used to quickly implement and test new material behaviors. The result (i.e., inteiface +optimizer+ pre-processor) is an integrated approach to the development of new constitutive equations for structural computations.
Downloads
References
[ASA 83] R.J. ASARO. "Crystal Plasticity". J. Appl. Mech., 50:921-934, 1983.
[BAC 96] T. BACK. "Evolutionary Algorithms in Theory and Practice". Oxford
University Press, New York, 1996.
[BAT 82] K.J. BATHE. "Finite element procedures in engineering analysis". Prentice
Hall, Inc., 1982.
[BER 79] M. BERVEILER A. ZAOUI. "An extension of the self-consistent scheme to
plastically flowing polycrystals". J. Mech. Phys. Solids, 26:325-344, 1979.
[BES 98] J. BESSON R. FOERCH. "Application of object-oriented progrdmming
techniques to the finite element method. Part I-General concepts". Revue
europ!!nne des !!lements finis, to be published, 1998.
[BRO 70] C.G. BROYDEN. "The convergence of a class of double-rank minimization
algorithms 2: the new algorithm". Journal Inst. of Math. and ib Appl.,
:222-231, 1970.
(CAl 92] G. CAILLETAUD. "A Micromechanical Approach to Inelastic Behaviour of
Metals". "Int. J. of Plasticity", 8:55-73, 1992.
(CHA 89] J.-L. CHABOCHE. "Constitutive Equations for Cyclic Plasticity and Cyclic
Viscoplastidty". Int. J. of Plasticity, 5:247-302, 1989.
(FRA 85] P. FRANCIOSI. "The concepts of latent hardening and strain hardening in
metallic single crystals". Acta. met., 33:1601-1612, 1985.
(GUT 97] M. GuTMANN-AMBROISE. "Etude Experimentale et Numerique du
Comportement et de la Rupture d Chaud de Cemmiques Techniques''. PhD
thesis, Ecole des Mines de Paris, 1997.
(HIL 65] R. HILL. "Continuum Micro-Mechanisms of Elastoplastic Polycrystals".
J. Mech. Phys. Sol., 13:89-101, 1965.
(HUT 76] J.W. HuTCHINSON. "Bounds and self-consistent estimates for creep of
polycrystalline materials". Proceedings Royal Society London A, 348:101-
, 1976.
(KOC 66] U.F. KOCKS T.J. BROWN. "Latent hardening in aluminium". Acta. met.,
:87-98, 1966.
(KRO 61] E. KRONER. "Zur plastischen Verformung des Vielkristalls". Acta met.,
:155-161, 1961.
(MAN 65] J. MANDEL. "Une generalisation de Ia theorie de Ia plasticite de W.T.
Koiter". Int. J. Solids Struct., 1:273-295, 1965.
(JI.fER 91] L. MERIC G. CAILLETAUD. "Single (.Tystal modeling for structural
calculations. Part 2: Finite element implementation". Journal of
Enginering Mat. Technol., 113:171-182, 1991.
(MER 94] L. MERIC, G. CAILLETAUD, M. GASPERINI. "F.E. calculations of coppe
bicrystal specimens submitted to tension-compression tests". Acta. met.,
(3):921-935, 1994.
(MOL 87] A. MOLINARI, R. CANOVA, S. AHZI. "A Self-Consistent Approach to the
Large Deformation Polycrystal Viscoplastidty". Acta met., 35:2983-2994,
(NEL 65] J.A. NELDER R. MEAD. "A simplex method for function minimization".
Computer Journal, 7:308-313, 1965.
(NOU 95] D. NOUAILHAS, J.-P. PIERRE CULIE, G CAILLETAUD, L. MERIC. "F.E.
Analysis of the Stress-Strain Behaviour of Single-Crystal Thbes". Eur. J.
Mech., A/Solids, 14(1):137-154, 1995.
(PIL 94] P. PILVIN. "The Contribution of MkTomechanical Approaches to the
Modelling of Inelastic Behaviour". In A. PINEAU, G. CAILLETAUD,
T. LINDLEY, editors, Fourth International Conference on Biaxialjmultiaxial
Fatigue, pages 31-46. ESIS, May 31-June 3, Saint-Germain, France 1994.
(SCH 86] K. SCHITTKOWSKI. "QLD: A FORTRAN Code for Quadratic Programming,
User's Guide". Mathematisches Institut, Universitat Bayreuth,
Germany, 1986.
(TAY 38] G.l. TAYLOR. "Plastic Strain in Metals". J. Inst. Metals, 62:307-324, 1938.
(ZHO 97] J.L. ZHOU A.L. LAWRENCE, C. Tits. "User's Guide for CFSQP Version
fl'. Institut for System Research TR-94-16r1, University of Maryland,
College Park, MD 20742, 1997. USA, 1997.