Application of parallel computation to material models with a large numb~r of internal variables
Keywords:
finite elements, parallel computation, viscoplasticity, polycrystalline model, FETI methodAbstract
The finite element code ZiBuLoN has been parallelized using the FEfl subdomain decomposition method for the use of non-linear mechanical behavior models which require a high number of internal variables. This paper describes the chosen paralle/ization technique, the polycrystalline model - a non-linear model requiring a large number of internal variables developed at the Centre des Materiaux de !'Ecole des Min es de Paris - and shows some tests which bear out the efficiency of the promoted methods for tlte computation of tridimensional complex structures involving a strong non-linear behavior.
Downloads
References
(1] R . J . ASARO. Crystal plasticity. J. Appl. Mech., 50:921- 934, 1983.
(2] M. BERVEILLER AND A. ZAOUI. An extension of the self onsistent
scheme to plastically flowing polycrystal. JMPS, 6:325- 344, 1979.
(3] F.-X. R. C . FAHRAT. Implicit parallel processing in structural mechanics.
CMA, 2(1), 1994.
(4] G. CAILLETAUD. A micromechanical approach to inelastic behaviour of
metals. IJP, 8:55- 73, 1992.
G . CAILLETAUD AND P . PILVIN. Utilisation de modeles polycristallins
pour le calcul par elements finis. REEF, 3(4):515- 541, 1994.
(6] S. CALLOCH AND D. MARQUIS. Additional hardening due to tensiontorsion
nonproportional loadings: Influence of the loading path shape.
STP 1280, pages 113- 130. ASTM, 1997.
J .-L. CHABOCHE. Constitutive equations for cyclic plasticity and cyclic
viscoplasticity. IJP, 5:247- 302, 1989.
F . FEYEL. Parallelisme et approches multi-echelles en mecanique des
materiaux. PhD thesis, Ecole Normale Superieure de Mines de Paris,
In progress.
(9] F. FEYEL, S. CALLOCH, D. MARQUIS, AND G. CAILLETAUD. F.e. computation
of a triaxial specimen using a polycrystalline model. CMS, accepted,
(10] R. FOERCH. Un environnement oriente objet pour la modelisation en
mecanique des materiaux. PhD thesis, Ecole Nationale Superieure des
Mines de Paris, 1996.
(11} P. FRANCIOSJ. The concepts of latent hardening and strain hardening in
metallic single crystals. ACTAMET, 33:1601- 1612, 1985.
(12} R. HILL. Continuum micro-mechanisms of elastoplastic polycrystals.
JMPS, 13:89- 101, 1965.
(1] R . J . ASARO. Crystal plasticity. J. Appl. Mech., 50:921- 934, 1983.
(2] M. BERVEILLER AND A. ZAOUI. An extension of the self onsistent
scheme to plastically flowing polycrystal. JMPS, 6:325- 344, 1979.
(3] F.-X. R. C . FAHRAT. Implicit parallel processing in structural mechanics.
CMA, 2(1), 1994.
(4] G. CAILLETAUD. A micromechanical approach to inelastic behaviour of
metals. IJP, 8:55- 73, 1992.
G . CAILLETAUD AND P . PILVIN. Utilisation de modeles polycristallins
pour le calcul par elements finis. REEF, 3(4):515- 541, 1994.
(6] S. CALLOCH AND D. MARQUIS. Additional hardening due to tensiontorsion
nonproportional loadings: Influence of the loading path shape.
STP 1280, pages 113- 130. ASTM, 1997.
J .-L. CHABOCHE. Constitutive equations for cyclic plasticity and cyclic
viscoplasticity. IJP, 5:247- 302, 1989.
F . FEYEL. Parallelisme et approches multi-echelles en mecanique des
materiaux. PhD thesis, Ecole Normale Superieure de Mines de Paris,
In progress.
(9] F. FEYEL, S. CALLOCH, D. MARQUIS, AND G. CAILLETAUD. F.e. computation
of a triaxial specimen using a polycrystalline model. CMS, accepted,
(10] R. FOERCH. Un environnement oriente objet pour la modelisation en
mecanique des materiaux. PhD thesis, Ecole Nationale Superieure des
Mines de Paris, 1996.
(11} P. FRANCIOSJ. The concepts of latent hardening and strain hardening in
metallic single crystals. ACTAMET, 33:1601- 1612, 1985.
(12} R. HILL. Continuum micro-mechanisms of elastoplastic polycrystals.
JMPS, 13:89- 101, 1965.