Multimodeling of multi-alterated structures in the Arlequin framework
DOI:
https://doi.org/10.13052/REMN.17.969-980Keywords:
multi-alteration, multi-patch, multimodel, Arlequin framework, substructuring, parallel computing, FETI methodAbstract
The goal of this work is the development of a numerical methodology for flexible and low-cost computation and/or design of complex structures that might have been obtained by a multialteration of a sound simple structure. The multimodel Arlequin framework is herein used to meet the flexibility and low-costs requirements. A preconditioned FETI-like solver is adapted to the solution of the discrete mixed Arlequin problems obtained by using the Finite Element Method. Enlightening numerical results are given.
Downloads
References
Ben Dhia H., Problèmes mécaniques multi-échelles : la méthode Arlequin, C.R.A.S. Paris,
Série IIb, vol. 326, p. 899-904, 1998.
Ben Dhia H., Numerical modelling of multiscale problems : the Arlequin method, ECCM'99,
Ben Dhia H., Global-local approaches: the Arlequin method, European Journal of Computational
Mechanics, vol. 15, p. 67-80, 2006.
Ben Dhia H., Rateau G., Mathematical analysis of the mixed Arlequin method, Comptes
Rendus de l'Académie des Sciences Paris Série I, vol. 332, p. 649-654, 2001.
Ben Dhia H., Rateau G., Application of the Arlequin method to some structures with defects,
Finite Element European Review, vol. 11, p. 291-304, 2002.
Ben Dhia H., Rateau G., The Arlequin method as a exible engineering design tool, International
Journal of Numerical Methods in Engineering, vol. 62, p. 1442-1462, 2005.
Ben Dhia H., Romdhane Y., Simulation de la propagation fragile des ssures dans le cadre
Arlequin, Rapport Michelin, 2006.
Farhat C., Roux F.-X., A method of nite element tearing and interconnecting and its parallel
solution algorithm, International Journal of Numerical Methods in Engineering, vol. 32,
p. 1205-1227, 1991.
Feyel F., Chaboche J., FE2 multiscale approach for modelling the elastoviscoplastic behaviour
of long ber SiC-Ti composite material, Computer Methods in Applied Mechanics and
Engineering, vol. 183, p. 309-330, 2000.
Fish J., The s-version of the nite element method, International Journal of Numerical Methods
in Engineering, vol. 43, p. 539-547, 1992.
Ladevèze P., Dureisseix D., A new micro-macro computational strategy for structural analysis
, Comptes Rendus de l'Académie des Sciences Paris Série IIb, vol. 327, p. 237-1244,
Strouboulis T. Babuka I., Copps K., The design and analysis of the Generalized Finite Element
Method, Computer Methods in Applied Mechanics and Engineering, vol. 181, p. 43-
, 2000.