Hybrid frictional contact particles-in elements
Keywords:
contact, friction, hybrid, contact elementsAbstract
By analyzing functional, geometrical and numerical integration aspects, hybrid frictional contact particles-in-elements are derived from the continuous hybrid formulation of 3D large transformation frictional contact problems given in [BEN 99] [BEN 00a]. The suggested approach is illustrated by some academic and industrial contact tests.
Downloads
References
[BAB 73] BABUSKA I., “The finite element method with lagrangian multipliers”, Numer.
Math., vol. 20, 1973, p. 179-192.
[BEN 95a] BEN DHIA H., Numerical analysis of perturbed contact problems in Contact
Mecanics, edited by M. Raous et al., Plenum Press, New York, 1995.
[BEN 95b] BEN DHIA H., DURVILLE D. , “Calembour: An implicit method based on
enriched kinematical thin plate model for sheet metal forming simulation”, J. of Materials
Processing Technology, vol. 50, 1995, p. 70-80.
[BEN 99] BEN DHIA H., VAUTIER I., “Une formulation pour traiter le contact frottement
en 3D dans le _”, Rapport EDF HI-75/99/007/A, , 1999.
[BEN 00a] BEN DHIA H., VAUTIER I., ZARROUG M., “Problèmes de contact frottant
en grandes transformations: du continu au discret”, Revue Européenne des Eléments Finis,
vol. 9, 2000, p. 243-261.
[BEN 00b] BEN DHIA H., ZARROUG M., MASSIN P., VAUTIER I., “Finite elements/
points for a hybrid formulation of contact-friction problems in large transformations”,
Chicago, The 20th ICTAM Congress, , 2000.
[BEN 01] BEN DHIA H., ZARROUG M., “Contact in the Arlequin framework”, Proceedings
of the third Contact Mechanics International Symposium (eds) Martins & Marques,
Kluwer, 2001, p. 403-411.
[BER 94] BERNARDI C., MADAY Y., PATRA A.T., “A new nonconfirming approach to
domain decomposition : the mortar element method”, Collège de France Seminar, vol. H.
Brezis, J.L. Lions, num. Pitman, 1994, p. 13-51.
[BRE 78] BREZZI, F., HAGER, W., RAVIART, P.A., “Error estimates for the finite element
solution of variational inequalities”, Numer. Mat., vol. 31, 1978, p. 1-16.
[HAS 96] HASLINGER J., HLAVA ˇCEK I., NEˇC S J., “Numerical methods for unilateral
problems in solid mechanics”, In Handbook of Numerical Ana lysis, vol. IV, num. part2,
, p. 313-485.
[KIK 88] KIKUCHI N., ODEN J.T., “Contact Problems in Elasticity: a Study of Variational
Inequalities and Finite Element Methods”, SIAM, Philadelphia, , 1988.
[KLA 95] KLARBRING A., “Large displacement frictional contact : a continuum frameworke
for finite element discretization”, Eur.J.Mech., A/Solids, vol. 14, num. 2, 1995,
p. 237-253.
[KRS 00] KRSTULOVIC-OPERA L., WRIGGERS P. AND KORELEC J., “Symbolically
generated 3D smooth polynomial frictional contact element based on the quadratic Bézier
surfaces”, Barcelone, ECCOMAS, , 2000.
[LAU 93] LAURSEN T.A., SIMO J.C., “A continuum-based finite element formulation for
the implicit solution of multibodies, large deformation frictional contact problems”, Int. J.
Numer. Meth. Engrg, vol. 36, 1993, p. 3451-3485.
[PAP 98] PAPADOPOULOS. P, SOLBERG. J.M, “A Lagrange Multiplier Method for the
Finite Element Solution of Frictionless Contact Problems”, Mathl.Comput. Modelling,
vol. 28, num. 4-8, 1998, p. 373-384.
[PIE 99] PIETRZAK G., CURNIER A., “Large deformation frictional contact mechanics:
continuum formulation and augmented Lagrangian treatment”, Comput. Methods Appl.
Mech. Engrg., vol. 177, 1999, p. 351-381.
[WAG 88] WAGONER R. NAKAMACHI E. L. C., “A benchmark test for sheet metal forming
analysis”, Technical Report, , num. ERC/NSM-S-90-22, 1988, Page Ohio Satate University