Hybrid frictional contact particles-in elements

Authors

  • Hachmi Ben Dhia École Centrale Paris - MSSMat 92295 Châtenay-Malabry
  • Malek Zarroug École Centrale Paris - MSSMat 92295 Châtenay-Malabry

Keywords:

contact, friction, hybrid, contact elements

Abstract

By analyzing functional, geometrical and numerical integration aspects, hybrid frictional contact particles-in-elements are derived from the continuous hybrid formulation of 3D large transformation frictional contact problems given in [BEN 99] [BEN 00a]. The suggested approach is illustrated by some academic and industrial contact tests.

Downloads

Download data is not yet available.

References

[BAB 73] BABUSKA I., “The finite element method with lagrangian multipliers”, Numer.

Math., vol. 20, 1973, p. 179-192.

[BEN 95a] BEN DHIA H., Numerical analysis of perturbed contact problems in Contact

Mecanics, edited by M. Raous et al., Plenum Press, New York, 1995.

[BEN 95b] BEN DHIA H., DURVILLE D. , “Calembour: An implicit method based on

enriched kinematical thin plate model for sheet metal forming simulation”, J. of Materials

Processing Technology, vol. 50, 1995, p. 70-80.

[BEN 99] BEN DHIA H., VAUTIER I., “Une formulation pour traiter le contact frottement

en 3D dans le _”, Rapport EDF HI-75/99/007/A, , 1999.

[BEN 00a] BEN DHIA H., VAUTIER I., ZARROUG M., “Problèmes de contact frottant

en grandes transformations: du continu au discret”, Revue Européenne des Eléments Finis,

vol. 9, 2000, p. 243-261.

[BEN 00b] BEN DHIA H., ZARROUG M., MASSIN P., VAUTIER I., “Finite elements/

points for a hybrid formulation of contact-friction problems in large transformations”,

Chicago, The 20th ICTAM Congress, , 2000.

[BEN 01] BEN DHIA H., ZARROUG M., “Contact in the Arlequin framework”, Proceedings

of the third Contact Mechanics International Symposium (eds) Martins & Marques,

Kluwer, 2001, p. 403-411.

[BER 94] BERNARDI C., MADAY Y., PATRA A.T., “A new nonconfirming approach to

domain decomposition : the mortar element method”, Collège de France Seminar, vol. H.

Brezis, J.L. Lions, num. Pitman, 1994, p. 13-51.

[BRE 78] BREZZI, F., HAGER, W., RAVIART, P.A., “Error estimates for the finite element

solution of variational inequalities”, Numer. Mat., vol. 31, 1978, p. 1-16.

[HAS 96] HASLINGER J., HLAVA ˇCEK I., NEˇC S J., “Numerical methods for unilateral

problems in solid mechanics”, In Handbook of Numerical Ana lysis, vol. IV, num. part2,

, p. 313-485.

[KIK 88] KIKUCHI N., ODEN J.T., “Contact Problems in Elasticity: a Study of Variational

Inequalities and Finite Element Methods”, SIAM, Philadelphia, , 1988.

[KLA 95] KLARBRING A., “Large displacement frictional contact : a continuum frameworke

for finite element discretization”, Eur.J.Mech., A/Solids, vol. 14, num. 2, 1995,

p. 237-253.

[KRS 00] KRSTULOVIC-OPERA L., WRIGGERS P. AND KORELEC J., “Symbolically

generated 3D smooth polynomial frictional contact element based on the quadratic Bézier

surfaces”, Barcelone, ECCOMAS, , 2000.

[LAU 93] LAURSEN T.A., SIMO J.C., “A continuum-based finite element formulation for

the implicit solution of multibodies, large deformation frictional contact problems”, Int. J.

Numer. Meth. Engrg, vol. 36, 1993, p. 3451-3485.

[PAP 98] PAPADOPOULOS. P, SOLBERG. J.M, “A Lagrange Multiplier Method for the

Finite Element Solution of Frictionless Contact Problems”, Mathl.Comput. Modelling,

vol. 28, num. 4-8, 1998, p. 373-384.

[PIE 99] PIETRZAK G., CURNIER A., “Large deformation frictional contact mechanics:

continuum formulation and augmented Lagrangian treatment”, Comput. Methods Appl.

Mech. Engrg., vol. 177, 1999, p. 351-381.

[WAG 88] WAGONER R. NAKAMACHI E. L. C., “A benchmark test for sheet metal forming

analysis”, Technical Report, , num. ERC/NSM-S-90-22, 1988, Page Ohio Satate University

Downloads

Published

2002-12-01

How to Cite

Dhia, H. B. ., & Zarroug, M. (2002). Hybrid frictional contact particles-in elements. European Journal of Computational Mechanics, 11(2-4), 417–430. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2621

Issue

Section

Original Article