Application of the Arlequin method to some structures with defects
Keywords:
defects, Arlequin method, numerical aspects, applicationsAbstract
The Arlequin method offers an alternative framework for the multimodel mechanical simulations. This paper aims at showing the promising potentialities of this approach to introduce defects in a sound model with great flexibility. The formulations and the related theoretical results are recalled and the key points for numerical implementation are discussed. Numerical examples illustrate their efficiency.
Downloads
References
[Bab 00] BABUŠKA I., STROUBOULIS T. AND COPPS K., “The design and analysis of the
Generalized Finite Element Method”, Comp. Meth. Appl. Mech. Engrg., vol. 181, 2000,
p. 43-69.
[Bat 90] BATOZ J-L., DHATT G., “Modélisation des structures par éléments finis”, Hermès,
Paris, , 1990.
[Ben 98] BEN DHIA H., “Multiscale mechanical problems : the Arlequin method”,
C.R.Acad.Sci., Paris, Série IIb, vol. 326, 1998, p. 899-904.
[Ben 99] BEN DHIA. H., “Numerical modelling of multiscale problems : the Arlequin
method”, München, ECCM, CD, , 1999.
[Ben 01a] BEN DHIA H. AND RATEAU G., “Analysis of the Arlequin method and applications
to junction problems”, Krakow, ECCM, CD, , 2001.
[Ben 01b] BEN DHIA H. AND RATEAU G., “Mathematical analysis of the mixed Arlequin
method”, C.R.Acad.Sci., Paris, t. 332, Série I, , 2001, p. 649-654.
[Cia 78] CIARLET P.G., “The finite element method for elliptic problems”, North-Holland,
Amsterdam, , 1978.
[Glo 00] GLOWINSKI R., PAN T-W., HESLA T., JOSEPH D., PERIAUX J., “A distributed
Lagrange multiplier/fictitious domain method for the simulation of flow around moving
rigid bodies : application to particule flow”, Comp. Mech. Appl. Mech. Engrg., vol. 184,
, p. 241-267.
[Hug 98] HUGHES T.J.R., FEIJÓO G.R., MAZZEI L. AND QUINCY J-B., “The variational
multiscale method - a paradigm for computational mechanics”, Comp. Mech. Appl. Mech.
Engrg., vol. 138, 1998, p. 3-24.
[Lad 99] LADEVÈZE P. AND DUREISSEIX D., “A new micro-macro computational strategy
for structural analysis”, C.R.Acad.Sci., Paris, Série IIb, vol. 327, 1999, p. 1237-1244.
[Mus 54] MUSKHELISHVILI N.I., “Some basic problems of the mathematical theory of elasticity”,
Noordhoff international, Leyden, , 1954.
[Ode 97] ODEN J.T., ZOHDI T.I., “Analysis and adaptative modelling of highly heterogeneous
elastic structures”, Comp. Meth. Appl. Mech. Engrg., vol. 148, 1997, p. 367-391.
[Suk 97] SUKUMAR N., MOËS N., MORAN B., BELYTSCHKO T., “Modeling Holes and Inclusions
by Level Sets in the eXtended Finite Element Method”, Comp. Meth. Appl. Mech.
Engrg., vol. 148, 1997, p. 367-391.