Global-local approaches: the Arlequin framework
Keywords:
multimodel, multiscale, extended-partition of unity, partition of models, localglobal, Arlequin methodAbstract
Numerical approaches allowing for the local analysis of global models are listed, the Arlequin method being the topic of focus. By superposing mechanical states sharing energies, this method generates a partition of models framework that gives a consistent “plasticity” to the classical mechanical and numerical (mono-)modelling. It consists in a family of formulations of mechanical problems, each of them being derived by combining basic bricks whose choices are rigorously analysed. The effectiveness of this partition of models framework to allow concurrent multimodel and multiscale analysis is exemplified.
Downloads
References
Alturi S., The meshless method (MLPG) for domain & BIE discretizations, Tech Science Press,
Belytschko T., Black T., « Elastic crack growth in finite-elements with minimal remeshing »,
International Journal for Numerical Methods in Engineering, vol. 45, p. 601-620, 1999.
Belytschko T., Lu Y., GU L., « Element-free Galerkin methods », International Journal for
Numerical Methods in Engineering, vol. 37, p. 229-256, 1994.
Belytschko T., Organ D., Krongauz Y., « A coupled finite element-element-free Galerkin
method », Computational Mechanics, vol. 17, p. 186-195, 1995.
Ben-Dhia H., « Multiscale mechanical problems : the Arlequin method », Comptes Rendus de
l’Académie des Sciences Série IIb, vol. 326, p. 899-904, 1998.
Ben-Dhia H., « Numerical modelling of multiscale problems: the Arlequin method », CD of
First European Conference on Computational Mechanics, Muenchen Germany, p. 1-10,
Ben-Dhia H., Rateau G., « Mathematical analysis of the mixed Arlequin method », Comptes
Rendus de l’Académie des Sciences Série I, vol. 332, p. 649-654, 2001.
Ben-Dhia H., Rateau G., « Application of the Arlequin method to some structures with defects
», Revue Européenne des éléments finis, vol. 11, p. 291-304, 2002.
Ben-Dhia H., Rateau G., « The Arlequin method as a flexible engineering design tool », International
Journal for Numerical Methods in Engineering, vol. 62, p. 1442-1462, 2005a.
Ben-Dhia H., Zammali C., « Level-Sets and Arlequin framework for dynamic contact problems
», Revue Européenne des éléments finis, vol. 13, p. 403-414, 2004.
Ben-Dhia H., Zammali C., « Multiscale analysis of impacted structures », CD of the 5th International
Conference on Computation of Shell and Spatial Structures, IASS IACM, Salzburg
Austria, p. 1-4, 2005b.
Brezzi F., « On the existence, uniqueness and approximation of saddle-point problems arising
form Lagrangian multipliers », R.A.I.R.O., Analyse Numérique, vol. 8, p. 129-151, 1974.
Farhat C., Harrari I., Franca L., « The discontinuous enrichment method », Computer Methods
in Applied Mechanics and Engineering, vol. 190, p. 6455-6479, 2001.
Feyel F., Chaboche J., « FE2 multiscale approach for modelling the elastoviscoplastic behaviour
of long fiber SiC-Ti composite material », Computer Methods in Applied Mechanics and
Engineering, vol. 183, p. 309-330, 2000.
Fish J., « The s-version of the finite element method », Computers and Structures, vol. 43,
p. 539-547, 1992.
Fish J., Yuan Z., « Multiscale enrichment based on partition of unity », International Journal
for Numerical Methods in Engineering, vol. 62, p. 1341-1359, 2005.
Glowinski R., Hesla T., Joseph D., Periaux J., « A distributed Lagrange multiplier/ fictituous
domain method for the simulation of flow arround moving rigid bodies: application
to particule flow », Computer Methods in Applied Mechanics and Engineering, vol. 184,
p. 241-267, 2000.
Hansbo A., Hansbo P., « An unfitted finite element method, based on Nitsche’s method, for
elliptic interface problems », Computer Methods in Applied Mechanics and Engineering,
vol. 191, p. 5537-5552, 2002.
Hughes T., Feijóo G., Mazzei L., Quincy J., « The variational multiscale method - a paradigm
for computational mechanics », Computer Methods in Applied Mechanics and Engineering,
vol. 166, p. 3-24, 1998.
Jirousek J., Wroblewski A., « T-elements: state of the art and future trends », Archives of
Computational Methods in Engineering, vol. 3-4, p. 323-434, 1996.
Ladevèze P., Dureisseix D., « A new micro-macro computational strategy for structural analysis
», Comptes Rendus de l’Académie des Sciences Paris Série IIb, vol. 327, p. 1237-1244,
Melenk J., Babuska I., « The partition of unity finite element method. Basic theory and applications
», Computer Methods in Applied Mechanics and Engineering, vol. 139, p. 289-314,
Moes N., Dolbow J., Belytschko T., « A finite element method for crack growth without remeshing
», International Journal for Numerical Methods in Engineering, vol. 46, p. 131-150,
Nayroles B., Touzot G., Villon P., « Generalizing the finite element method: diffuse approximation
and diffuse elements », Computers and Structures, vol. 10-5, p. 307-318, 1992.
Nitsche J., « Über ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung
von teilräumen, die keinen randbeidingungen unterworfen sind », Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, vol. 36, p. 9-15, 1971.
Rateau G., Méthode Arlequin pour les problèmes mécaniques multi-échelles. Application à des
problèmes de jonction et de fissuration de structures élancées Problèmes Variationnels dans
les Multidomaines, PhD thesis, Ecole Centrale de Paris, 2003.
Steger J., Benek J., « On the use of composite grid schemes in computational aerodynamics »,
Computer Methods in Applied Mechanics and Engineering, vol. 64, p. 301-320, 1987.
Strouboulis T., Babuska I., Copps K., « The Generalized Finite Element Method », Computer
Methods in Applied Mechanics and Engineering, vol. 190, p. 4081-4193, 2001.
Xiao S., Belytschko T., « A bridging domain method for coupling continua with molecular
dynamics », Computer Methods in Applied Mechanics and Engineering, vol. 1 (2), p. 1645-
, 2004.
Zohdi T., Oden J., Radi G., « Hierarchical modeling of heterogeneous bodies », Computer
Methods in Applied Mechanics and Engineering, vol. 148, p. 273-298, 1996.