X-SFEM, a computational technique based on X-FEM to deal with random shapes
DOI:
https://doi.org/10.13052/REMN%20%2016/2007/Keywords:
computational stochastic mechanics, X-FEM, level set, stochastic finite element, random geometryAbstract
We propose a new method to deal with random geometries. It is an extension to the stochastic context of the eXtended Finite Element Method. This method lies on two majors points: the implicit description of geometry by the level set technique and the use of the partition of unity method for the enrichment of the finite element approximation space. This new technique leads by a direct calculus on a fixed finite element mesh to a solution which is explicit in terms of the basic random variables describing the geometry. We present here the basis of this approach and several examples to illustrate its performances.
Downloads
References
Babuska I., “Effects of uncertainties in the domain on the solution of Dirichlet boundary value
problems”, Numer. Math., vol. 93, n° 4, 2003, p. 583-610.
Babuska I., Chleboun J., “Effects of uncertainties in the domain on the solution of Neumann
boundary value problems in two spatial dimensions”, Mathematics of Computation, vol. 71,
n° 240, 2002, p. 1339-1370.
Babuska I., Tempone R., Zouraris G. E., “Solving elliptic boundary value problems with uncertain
coefficients by the finite element method: the stochastic formulation”, Computer
Methods in Applied Mechanics and Engineering, vol. 194, 2005, p. 1251-1294.
Daux C., Moës N., Dolbow J., Sukumar N., Belytschko T., “Arbitrary branched and intersecting
cracks with the eXtended Finite Element Method”, Int. J. for Numerical Methods in
Engineering, vol. 48, 2000, p. 1741-1760.
Deb M., Babuska I., Oden J., “Solution of stochastic partial differential equations using
Galerkin finite element techniques”, Computer Methods in Applied Mechanics and Engineering,
vol. 190, 2001, p. 6359-6372.
Dolbow J., Moës N., Belytschko T., “Discontinuous enrichment in finite elements with a partition
of unity method”, Finite Elements in Analysis and Design, vol. 36, n° 3-4, 2000,
p. 235-260.
Ghanem R., “Ingredients for a general purpose stochastic finite elements implementation”,
Computer Methods in Applied Mechanics and Engineering, vol. 168, 1999, p. 19-34.
Ghanem R. G., Kruger R. M., “Numerical solution of spectral stochastic finite element systems”,
Comp. Meth. App. Mech. Eng., vol. 129, 1996, p. 289-303.
Ghanem R., Spanos P., Stochastic finite elements: a spectral approach, Springer, Berlin, 1991.
Keese A., Mathhies H. G., “Hierarchical parallelisation for the solution of stochastic finite element
equations”, Computer Methods in Applied Mechanics and Engineering, vol. 83, 2005,
p. 1033-1047.
Le Maître O. P., Knio O. M., Najm H. N., Ghanem R. G., “Uncertainty propagation using
Wiener-Haar expansions”, Journal of Computational Physics, vol. 197, 2004, p. 28-57.
Matthies H. G., Keese A., “Galerkin methods for linear and nonlinear elliptic stochastic partial
differential equations”, Computer Methods in Applied Mechanics and Engineering, vol.194,
n° 12-16, 2005, p. 1295-1331.
Melenk J. M., Babuska I., “The partition of unity method: basic theory and applications”,
Computer Methods in Applied Mechanics and Engineering, vol. 39, 1996, p. 289-314.
Moës N., Dolbow J., Belytschko T., “A finite element method for crack growth without remeshing”,
Int. J. for Numerical Methods in Engineering, vol. 46, 1999, p. 131-150.
Nouy A., Schoefs F., « Technique de décomposition spectrale optimale pour la résolution
d’équations aux dérivées partielles stochastiques », Proceedings of the Congrès
Français de Mécanique (CFM 2005), Troyes, France, 2005. CD-ROM. http://belz.univubs.
fr/lg2m/Documentation/CFM2005/articles/697.pdf.
Pellissetti M. F., Ghanem R. G., “Iterative solution of systems of linear equations arising in
the context of stochastic finite elements”, Advances in Engineering Software, vol. 31, 2000,
p. 607-616.
Sethian J., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge
University Press, Cambridge, UK, 1999.
Soize C., Ghanem R., “Physical systems with random uncertainties: chaos representations with
arbitrary probability measure”, SIAM J. Sci. Comput., vol. 26, n° 2, 2004, p. 395-410.
Sukumar N., Chopp D., Moës N., Belytschko T., “Modeling holes and inclusions by level sets
in the extended finite-element method”, Computer Methods in Applied Mechanics and Engineering,
vol. 190, 2001, p. 6183-6200.
Wiener N., “The homogeneous chaos”, Am. J. Math., vol. 60, 1938, p. 897-936.
Xiu D. B., Karniadakis G. E., “The Wiener-Askey Polynomial Chaos for stochastic differential
equations”, SIAM J. Sci. Comput., vol. 24, n° 2, 2002, p. 619-644.