X-FEM, de nouvelles frontières pour les éléments finis
Keywords:
finite elements, X-FEM, discontinuities, partition of unity, level sets method, fracture mechanics, interface modelingAbstract
In 1999, an extension of the finite element method was introduced. Later called X-FEM (“eXtended Finite Element Method”), this extension allows one to model surfaces of discontinuity (cracks, material interfaces, free surfaces, . . . ) on a mesh even if the mesh does not conform to these surfaces. This paper summarizes the achievement obtained so far with XFEM, especially regarding the coupling of X-FEM with the “level sets” method which provides an efficient representation of the surfaces and a robust computation of their evolution.
Downloads
References
[BEL 88] BELYTSCHKO T., FISH J., ENGLEMANN B., « A finite element method with embedded
localization zones », Comp. Meth. in Applied Mech. and Engrg., vol. 70, 1988,
p. 59–89.
[BEL 94] BELYTSCHKO T., LU Y., GU L., « Element-free Galerkin methods », International
Journal for Numerical Methods in Engineering, vol. 37, 1994, p. 229–256.
[BEL 99] BELYTSCHKO T., BLACK T., « Elastic Crack Growth in Finite Elements with Minimal
Remeshing », International Journal for Numerical Methods in Engineering, vol. 45,
n 5, 1999, p. 601–620.
[BEL 01] BELYTSCHKO T., MOËS N., USUI S., PARIMI C., « Arbitrary discontinuities in
finite elements », International Journal for Numerical Methods in Engineering, vol. 50,
, p. 993-1013.
[BEN 98] BEN DHIA H., « Problèmes mécaniques multi-échelles : la méthode Arlequin. »,
Compte-Rendus Acad. Sci. Paris, Série II, vol. 326, 1998, p. 899–904.
[CHE 02] CHESSA J., SMOLINSKI P., BELYTSCHKO T., « The extended finite element method
(XFEM) for solidification problems », International Journal for Numerical Methods in
Engineering, vol. 53, 2002, p. 1959–1977.
[DAU 00] DAUX C., MOËS N., DOLBOW J., SUKUMAR N., BELYTSCHKO T., « Arbitrary
branched and intersecting cracks with the eXtended Finite Element Method », International
Journal for Numerical Methods in Engineering, vol. 48, 2000, p. 1741-1760.
[DOL 00a] DOLBOW J., MOËS N., BELYTSCHKO T., « Discontinuous Enrichment in Finite
Elements with a Partition of Unity Method », Finite elements in analysis and design,
vol. 36, 2000, p. 235–260.
[DOL 00b] DOLBOW J., MOËS N., BELYTSCHKO T., « Modeling fracture in Mindlin-
Reissner plates with the eXtended finite element method », Int. J. Solids Structures, vol. 37,
, p. 7161-7183.
[DOL 01] DOLBOW J., MOËS N., BELYTSCHKO T., « An extended finite element method for
modeling crack growth with frictional contact », Comp. Meth. in Applied Mech. and Engrg.,
vol. 190, 2001, p. 6825–6846.
[DUA 96] DUARTE C., ODEN J., « An hp meshless method », Numerical methods for partial
differential equations, vol. 12, 1996, p. 673–705.
[FLE 97] FLEMING M., CHU Y. A., MORAN B., BELYTSCHKO T., « Enriched element-free
Galerkin methods for crack tip fields », International Journal for Numerical Methods in
Engineering, vol. 40, n 8, 1997, p. 1483–1504.
[GER 87] GERSTLE W. H., MARTHA L., INGRAFFEA A. R., « Finite and Boundary Element
Modeling of Crack Propagation in Two- and Three-Dimensions », Engineering with Computers,
vol. 2, 1987, p. 167–183.
[GRA 02] GRAVOUIL A., MOËS N., BELYTSCHKO T., « Non-planar 3D crack growth by the
extended finite element and level sets. Part II : level set update », International Journal for
Numerical Methods in Engineering, vol. 53, 2002, p. 2569-2586.
[JI ] JI H., CHOPP D., DOLBOW J., « A hybrid extended finite element / level set method for
modeling phase transformation », International Journal for Numerical Methods in Engineering,
to appear.
[JIR 00] JIRÁSEK M., « Comparative study on finite elements with embedded discontinuities
», Comp. Meth. in Applied Mech. and Engrg., vol. 188, n 1, 2000, p. 307–330.
[KRO 98] KRONGAUZ Y., BELYTSCHKO T., « EFG approximation with discontinuous derivatives
», International Journal for Numerical Methods in Engineering, vol. 41, n 7, 1998,
p. 1215–1233.
[KRY 99] KRYSL P., BELYTSCHKO T., « Element free Galerkin method for dynamic propagation
of arbitrary 3-D cracks », International Journal for Numerical Methods in Engineering,
vol. 44, n 6, 1999, p. 767–800.
[LAD 96] LADEVÈZE P., Mécanique non linéaire des structures. Nouvelle approche et méthodes
de calcul non incrémentales, Hermes, 1996, (English version, Springer 1998).
[LIU 93] LIU W., ADEE J., JUN S., BELYTSCHKO T., « Reproducing Kernel Particle Methods
for elastic and plastic problems », Am Soc Mech Eng Appl Mech Div AMD, vol. 180, 1993,
p. 175–189.
[MAR 93] MARTHA L. F., WAWRZYNEK P. A., INGRAFFEA A. R., « Arbitrary crack representation
using solid modeling », Engineering with Computers, vol. 9, 1993, p. 63–82.
[MEL 96] MELENK J., BABUŠKA I., « The Partition of Unity Finite Element Method : Basic
theory and applications », Comp. Meth. in Applied Mech. and Engrg., vol. 39, 1996,
p. 289-314.
[MOË ] MOËS N., BELYTSCHKO T., « Extended Finite Element Method for Cohesive Crack
Growth », Engineering Fracture Mechanics, To appear.
[MOË 99] MOËS N., DOLBOW J., BELYTSCHKO T., « A finite element method for crack
growth without remeshing », International Journal for Numerical Methods in Engineering,
vol. 46, 1999, p. 131–150.
[MOË 02] MOËS N., GRAVOUIL A., BELYTSCHKO T., « Non-planar 3D crack growth by the
extended finite element and level sets. Part I : Mechanical model », International Journal
for Numerical Methods in Engineering, vol. 53, 2002, p. 2549-2568.
[NAY 92] NAYROLES B., TOUZOT G., VILLON P., « Generalizing the finite element method :
Diffuse approximation and diffuse elements », Computers and Structures, vol. 10, n 5,
, p. 307–318.
[ODE 98] ODEN J., DUARTE C., ZIENKIEWICZ O., « New cloud-based hp finite element
method », Comp. Meth. in Applied Mech. and Engrg., vol. 153, n 1, 1998, p. 117–126.
[OLI 95] OLIVER J., « Continuum modeling of strong discontinuities in solid mechanics using
damage models », Computational Mechanics, vol. 17, 1995, p. 49–61.
[OSH 88] OSHER S., SETHIAN J. A., « Fronts Propagating with Curvature-Dependent Speed :
Algorithms Based on Hamilton-Jacobi Formulations », Journal of Computational Physics,
vol. 79, n 1, 1988, p. 12–49.
[RAS 98] RASHID M. M., « The arbitrary local mesh refinement method : An alternative to
remeshing for crack propagation analysis », Comp. Meth. in Applied Mech. and Engrg.,
vol. 154, 1998, p. 133–150.
[SET 99] SETHIAN J. A., Level Set Methods & Fast Marching Methods : Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science,
Cambridge University Press, Cambridge, UK, 1999.
[STO 01] STOLARSKA M., CHOPP D. L., MOËS N., BELYTSCHKO T., « Modelling Crack
Growth by Level Sets and the Extended Finite Element Method », International Journal
for Numerical Methods in Engineering, vol. 51, n 8, 2001, p. 943–960.
[STR 00] STROUBOULIS T., BABUŠKA I., COPPS K., « The design and analysis of the generalized
finite element method », Comp. Meth. in Applied Mech. and Engrg., vol. 181, 2000,
p. 43–71.
[SUK 00] SUKUMAR N., MOËS N., BELYTSCHKO T., MORAN B., « Extended Finite Element
Method for three-dimensional crack modelling », International Journal for Numerical
Methods in Engineering, vol. 48, n 11, 2000, p. 1549–1570.
[SUK 01a] SUKUMAR N., CHOPP D. L., MOËS N., BELYTSCHKO T., « Modeling Holes and
Inclusions by Level Sets in the Extended Finite Element Method », Comp. Meth. in Applied
Mech. and Engrg., vol. 190, 2001, p. 6183–6200.
[SUK 01b] SUKUMAR N., CHOPP D. L., MORAN B., « Extended Finite Element Method and
Fast Marching Method for Three-Dimensional Fatigue Crack Propagation », Engineering
Fracture Mechanics, , 2001, submitted.
[WAG 01] WAGNER G., MOËS N., LIU W., BELYTSCHKO T., « The Extended Finite Element
Method for Stokes Flow Past Rigid Cylinders », International Journal for Numerical
Methods in Engineering, vol. 51, 2001, p. 393–413.
[WEL 01] WELLS G., SLUYS L., « A new method for modelling cohesive cracks using finite
elements », International Journal for Numerical Methods in Engineering, vol. 50, 2001,
p. 2667–2682.