Application de la méthode X-FEM à la résolution de problèmes de micromécanique

Authors

  • Patrice Cartraud GeM (Institut de Recherche en Génie Civil et Mécanique, UMR CNRS 6183) Ecole Centrale de Nantes BP 92101 F-44321 Nantes Cedex 3
  • Mathieu Cloirec GeM (Institut de Recherche en Génie Civil et Mécanique, UMR CNRS 6183) Ecole Centrale de Nantes BP 92101 F-44321 Nantes Cedex 3
  • Nicolas Moës GeM (Institut de Recherche en Génie Civil et Mécanique, UMR CNRS 6183) Ecole Centrale de Nantes BP 92101 F-44321 Nantes Cedex 3

Keywords:

homogenization, X-FEM, partition of unity, level set

Abstract

The eXtended Finite Element Method (X-FEM) allows one to enrich finite element approximation space, thus accounting for discontinuities inside an element. This method is applied in this paper to the solution of micromechanical problem, in order to simplify the mesh generation, since it does not need to conform to the material interfaces. A new enrichment function is proposed, which turns out to have the same accuracy as the classical finite element method. Numerical experiments are presented, for material applications, and for a strandedrope structure.

Downloads

Download data is not yet available.

References

[BEL 03] BELYTSCHKO T., PARIMI C., MOËS N., SUKUMAR N., USUI S., « Structured extended

finite element methods for solids defined by implicit surfaces », International Journal

for Numerical Methods in Engineering, vol. 56, 2003, p. 609–635.

[BÖH 98] BÖHM H., « A Short Introduction to Basic Aspects of Continuum Micromechanics

», Cdl-fmd report 3-1998, http ://ilfb.tuwien.ac.at/links/mom_m.html, 1998, TUWien,

Vienna.

[DUM 90] DUMONTET H., Homogénéisation et effets de bords dans les matériaux composites,

Thèse d’Etat, Université Paris 6, 1990.

[MEL 96] MELENK J., BABUŠKA I., « The Partition of Unity Finite Element Method : Basic

theory and applications », Comput. Meth. Appl. Mech. Eng., vol. 39, 1996, p. 289-314.

[MIC 99] MICHEL J., MOULINEC H., SUQUET P., « Effective properties of composite materials

with periodic microstruture : a computational approach », Comput. Meth. Appl. Mech.

Eng., vol. 172, no 1-4, 1999, p. 109-143.

[MOË 99] MOËS N., DOLBOW J., BELYTSCHKO T., « A finite element method for crack

growth without remeshing », International Journal for Numerical Methods in Engineering,

vol. 46, 1999, p. 131-150.

[MOË 00] MOËS N., Contributions au calcul des structures : Une extension de la méthode des

éléments finis. Le contrôle des calculs éléments finis non linéaires, Mémoire d’Habilitation,

Ecole Normale Supérieure de Cachan, 2000.

[MOË 03] MOËS N., CLOIREC M., CARTRAUD P., REMACLE J., « A computational approach

to handle complex microstructure geometries », Comput. Meth. Appl. Mech. Eng., vol. 192,

, p. 3163-3177.

[NAW 00] NAWROCKI A., LABROSSE M., « A finite element model for simple straight wire

rope », Computers and Structures, vol. 77, 2000, p. 345-359.

[SET 99] SETHIAN J. A., Level Set Methods & Fast Marching Methods : Evolving Interfaces

in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science,

Cambridge University Press, Cambridge, UK, 1999.

[SUK 01] SUKUMAR N., CHOPP D. L., MOËS N., BELYTSCHKO T., « Modeling Holes and

Inclusions by Level Sets in the Extended Finite Element Method », Comp. Meth. in Applied

Mech. and Engrg., vol. 190, 2001, p. 6183–6200.

Downloads

Published

2004-08-21

How to Cite

Cartraud, P., Cloirec, M. ., & Moës, N. . (2004). Application de la méthode X-FEM à la résolution de problèmes de micromécanique. European Journal of Computational Mechanics, 13(5-7), 475–484. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2297

Issue

Section

Original Article