Finite element analyses of knitted composite reinforcement at large strain
Keywords:
knitted technical textiles, fibrous media, large deformations, hypoelastic anisotropic behaviorAbstract
The modelling of dry knitted reinforcements for structural composite parts at the mesoscopic scale is essential to establish simulation tools related to shaping processes. Deformation modes of such structures are linked to the textile’s manufacturing process, resulting in an anisotropic heterogeneous structure. This observation leads us to build an accurate 3D parametric geometric model of a jersey knit. Based on this geometric model, a finite element model is generated, allowing the analysis of the biaxial tensile mode of the elementary cell. In order to update the constitutive behavior, two formulations are implemented in the code Abaqus/Explicit and take into account a yarn’s compaction law and the evolution of the constitutive axes as large deformations occur. Finally, a comparison between the results of the two formulations and an experimental test is proposed.
Downloads
References
Boisse P., Gasser A., Hivet G., “Analyses of fabric tensile behaviour: determination of the
biaxial tension-strain surfaces and their use in forming simulations”, Composite part A,
Vol. 32, 2001, pp. 1395-1414.
Gasser A., Boisse P., Hanklar S., “Analysis of the mechanical behaviour of dry fabric
reinforcements, 3D simulations versus biaxial tests”, Comp. Mat. Sci., 17, 2000, pp. 7-20.
Gilormini P., Rougée P., Taux de rotation des directions matérielles dans un milieu
déformable, Comptes rendus de l’Aca. des Sci. Paris, 318, Série II, pp. 421-427, 1994.
Hagège B., Simulation du comportement mécanique des milieux fibreux en grandes
transformations: application aux renforts tricotés, Ph.D. Thesis, Laboratoire de
Mécanique des Systèmes et des Procédés, ENSAM Paris, France, 2004.
Hanklar S., Modélisation mécanique et numérique du comportement des tissus de fibres:
simulations du comportement mésoscopique de la maille élémentaire, Ph.D. Thesis,
Université de Paris 6, France, 1998.
Hughes T.J.R., Winget J., “Finite rotation effects in numerical integration of rate constitutive
equations arising in large deformation analysis”, IJNME, Vol. 15, 1980, pp. 1862-1867.
Kawabata S., “Nonlinear mechanics of woven and knitted materials”, in: Chou T.W., Ko F.K.
(eds.), Textile Structural Composites, Composite Materials Series, Vol. 3, Elsevier,
Amsterdam, 1989, pp. 67-116.
Petit J.N., Etude du comportement mécanique des tricots de renfort des tuyaux de refroidissement,
Rapport de stage Hutchinson-Automobile/ESEM, ESEM d’Orléans, 1998.
Postle R., Mechanics of wool structures, joint author with Carnaby G.A. and de Jong S., Ellis
Horwood, John Wiley & Sons, U.K., 1987.
Ramakrishna S., Huang Z.M., Teoh S.H., Tay A.A.O., Chew C.L., “Application of the model
of Leaf and Glaskin to estimating the 3D elastic properties of knitted-fabric-reinforced
composites”, J. Text. Inst., Vol. 91, Part 1, No. 1, 2000, pp. 132-150.
Rougée P., Mécanique des grandes transformations, Springer-Verlag, 1997.