Simulation de la mise en forme d’un renfort déséquilibré
Keywords:
experimental fabric forming, finite element simulations, unbalanced fabric, fabric mechanical behaviourAbstract
The simulation of forming of a very unbalanced woven reinforcement is described and compared with the experimental tests. Simulation is carried out thanks to the development of finite elements specific to fabrics based on the only deformation energy in tension. These elements implemented in explicit dynamics lead to a very simple form of the interior efforts. The results of simulation correctly translate the shape very unbalanced noted in experiments and which had with the very strong difference in behavior in the two directions of the reinforcement. This example shows the need for taking into account the characteristics of the mechanical behavior in the simulation of forming, contrary to the geometrical approaches of draping type.
Downloads
References
Belytschko T., “An overview of semidiscretisation and time integration procedures”,
Computation methods for transient analysis, ed. T. Belytschko & T.J.R.Hughes, Elsevier
Science, 1983, p. 1-65.
Belytschko T., Tsay C.S., “A stabilization procedure for the quadrilateral plate element with
one point quadrature”, International Journal for Numerical Methods in Engineering,
vol. 19, 1983, p. 275-290.
Bickerton S., Simacek P., Guglielmi S.E., Advani S.G., “Investigation of draping and its
effects on the mold filling process during manufacturing of a compound curved
composite part”, Composite Part A, vol. 28, 1997, p. 801-816.
Boisse P., Daniel J.L., Hivet G., Soulat D., “A simplified explicit approach for simulations of
fibre fabric deformation during manufacturing preforms for R.T.M. process”,
International Journal of Forming Processes, vol.3, n°3-4, 2001, p. 331-353.
Boisse P., Gasser A., Hivet G., “Analyses of fabric behaviour : determination of the biaxial
tension-strain surfaces and their use in forming simulations”, Composites Part A, vol. 32-
, 2001, p. 1395-1414.
Buet K., Boisse P., “Experimental analysis and models for biaxial mechanical behaviour of
composite woven reinforcements”, Experimental Mechanics, vol. 41, n° 3, 2001,
p. 260-269.
Carronnier D., Gay D., « Approche intégrée du RTM », Revue des composites et des
matériaux avancés, vol. 6, Hermes, 1996.
Dumont F., Contribution à l’expérimentation et à la modélisation du comportement
mécanique de renforts de composites, Thèse de doctorat, Université d’Orléans, 2003.
Hivet G., Launay J., Gasser A., Daniel J.L., Boisse P., “Mechanical Behaviour of Woven
composites reinforcements while forming”, Journal of thermoplastic Composite
Materials, Vol. 15, n°6, 2002, p. 545-555.
Long A.C., Rudd C.D., “A simulation of reinforcement deformation during the production of
preforms for liquid moulding processes”, I. Mech. E. J. Eng. Manuf., vol. 208, 1994,
p. 269-278.
Rudd C.D., Turner M.R., Long A.C., Middleton V., “Tow placement studies for liquid
composite moulding”, Composites Part A, vol. 30-9, 1999, p. 1105-1121
Van Der Ween F., “Algorithms for draping fabrics on doubly curved surfaces”, International
Journal of Numerical Method in Engineering, vol. 31, 1991, p. 1414-1426.
Wang J., Paton R., Paye J.R., “The draping of woven fabric preforms and prepregs for
production of polymer composite components”, Composites A, vol. 30, 1999, p. 757-765.
Zienkiewicz O., Taylor R., The finite element method, vol. 1, Ed. Mc GrawHill, 1989.