Comportement elastoplastique anisotrope pour I' analyse numerique des coques minces en grandes transformations

Authors

  • M. Lamine Boubakar LMARC-UMR CNRS no 6604 Universite de Franche-Comte 24, chemin de l'Epitaphe, F-25030 Besanfon cedex
  • Philippe Boisse ESEM Orleans, LM2S-URA CNRS n° 776 Universite Paris 6/ENSAM Paris 151, boulevard de l'Hopital, F-75013 Paris

Keywords:

anisotropic elastoplasticity, finite transformations, incremental laws, shell finite element, transverse shear locking, anisotropic frame, accuracy analysis, deep drawing

Abstract

Due to rolling and cristallographic texture development, thin sheets metal for stamping exhibit an initial orthotropic plastic behaviour that have to be incorporated in numerical modelling of sheet forming processes. A mechanical modelling of the behaviour is presented. It is based on a formulation in a rotating frame updatted using the proper rotation tensor. The stress calculation algoritlim associated is based on the prediction-correction method in the rotating frame and explicitly takes into account shell kinematics with mixed transverse shear interpolation. Numerical results on deep drawing problems show the accuracy and the efficiency of the proposed approach.

Downloads

Download data is not yet available.

References

[AHM 71] AHMAD S., IRONS B. M., ZIENCKIEWICZ 0. C., Analysis of thick and thin shell

structures by curved finite elements, Int. J.for Num. Meth. in Eng., Vol. 2, 1970, p. 419-451.

[BOI 92] BOISSE Ph., DANIEL J. L., GELIN J. C., A simple isoparametric three-node shell finite

element, Computers & Structures, Vol. 44, No.6, 1992, p. 1263-1273.

[BOI 93] BOISSE Ph., DANIEL J. L., GELIN J. C., Element fini de coque a trois nreuds pour le calcul

des structures minces en grandes deformations, Revue Europeenne des Elements finis, Vol. 2, No.

, 1993, p. 179-209, Editions Hermes, Paris.

[BOI 94] BOISSE Ph., DANIEL J. L., GELIN J. C., A CO three-node shell element for non linear

structural analysis, Int. J. for Num. Met h. in Eng., Vol. 37, 1994, p. 2339-2364.

[BOU 94] BOUBAKAR M. L., Contribution a Ia simulation numerique de l'emboutissage des t61es.

Prise en compte du comportement elastoplastique anisotrope, These de Doctorat de l'Universite de

Franche-Comte, Specialite Sciences pour l'Ingenieur.

[BOU 95] BOUBAKAR M. L., GELIN J. C., JOANNIC D., PAQUIER P., PERRIN S., Simulation du

retour elastique, modelisation et simulation du comportement orthotrope des t6les minces et

remaillage adaptatif en emboutissage, Rapport LMA/M2FM n° 05/95, 1995.

[BOU 96] BOUBAKAR L., BOULMANE L., GELIN J. C., Finite element modelling of the stamping

of anisotropic sheet metals, Engineering Computations, Vol. 13, W 2/3/4, 1996, p.l43-71.

[DAF 85] DAFALIAS Y. F., The plastic spin, J. Appl. Mech., Vol. 52, 1985, p. 865-871.

[DAF 89] DAFALIAS Y. F., RASHID M. M., The effect of plastic spin on anisotropic material

behavior, Int. J. of plasticity, Vol. 5, 1989, p. 227-246, 1989.

[DEB 90] DE BORST R. - FEENSTRA P. H., Studies in anisotropic plasticity with reference to the

Hill criterion, Int. J.for Num. Meth. in Eng., Vol. 29, 1990, p. 315-336.

[DOG 84] DOGUI A, SIDOROFF F., Quelques remarques sur Ia plasticite anisotrope en grandes

deformations, C. R. Acad. Sc. Paris, t. 299, Serle II, W 18, 1984.

[DOG 88] DOGUI A., Cinematique bidimensionnelle en grandes deformations. Application a Ia

traction hors axes eta Ia torsion, J. Meca. Th. et Appl., Vol. 1, 1988.

[DOG 89] DOGUI A., Plasticite anisotrope en grandes deformations, These de Doctorat es-Science,

Universite Claude Bernard - Lyon 1.

[HAL 75] HALPHEN B., NGUYEN Q. S., Sur les materiaux standards generalises, Journal de

Mecanique, Vol. 14, N° 1, 1975, p. 39-63.

[HIL 50] HILL R., The mathematical theory of plasticity, The Oxford Engineering Science Series,

[HUG 80] HUGHES T. J. R., WINGET J., Finite rotation effects in numerical integration of rate

constitutive equations arising in large deformation analysis, Int. J.for Num. Meth. in Eng., Vol. 15,

, p. 1862-1867.

[HUG 84] HUGHES T. J. R., Numerical implementation of constitutive models : rate independant

deviatoric plasticity, Theoritical foundation for large scale computation for non-linear material

behavior, Eds S. Nemat-Nasser, R. J. Asaro and G. A. Hgernier, 1984, p. 29-57.

[LAD 80] LADEVEZE P., Sur la theorie de la plasticite en grandes deformations, Rapport interne

N°9, LMT-ENSET-Cachan, 1980.

[LEE 69] LEE E. H., Elastic-plastic deformation at finite strains, J. Appl. Mech., Vol. 36, 1969.

[LOR 83] LORET B., On the effects of plastic rotations in the finite deformation of anisotropic

elastoplastic materials, Mechanics of Materials, 2, 1983, p. 287-304.

[MAN 71] MANDEL J., Plasticite et viscoplasticite, Cours C.I.S.M 97, Udine, Springer, New York.

[MAN 73] MANDEL J., Equations constitutives et directeurs dans les milieux plastiques et

viscoplastiques, Int. 1. Solids Structures, Vol. 9, 1973, p. 725-740.

[MAN 81] MANDEL J., Sur Ia definition de Ia vitesse de deformation elastique et sa relation avec Ia

vitesse de contrainte,Jnt. J. Solids Structures, Vol. 17, 1981, p. 873-878.

[MAN 83] MANDEL J., Sur Ia definition de Ia vitesse de deformation elastique en grande

transformation elastoplastique, Int. J. Solids Structures, Vol. 19, N° 7, 1983, p. 573-578.

[MON 84] MONTEILLET F., COHEN M., JONAS J. J., Axial stresses and texture development

during the torsion testing of AI, Cu and a-Fe, Acta Me tall., Vol. 32, W II, 1984, p. 2077-2089.

[MON 85] MONTEILLET F., COHEN M., JONAS J. J., Relation between axial stresses and texture

development during torsion testing: a simplified theory, Acta Metall., Vol. 33, N° 4, 1985, p. 705-

[NUM 93] NUMISHEET'93, Numerical simulation of 3-D sheet metal forming processes -

Verification of simulation with experiment-, Edited by A. Makinouchi, E. Nakamachi, E. Onate

and R. H. Wagoner, Japan, 1993.

[ORT 85] ORTIZ M., POPOV E. P., Accuracy and stability of integration algorithms for elastoplastic

constitutive relations, Int. J.for Num. Meth. in Eng., Vol. 21, 1985, p. 1561-1576.

[PER 92] PERIC D., DUTKO M., OWEN D. R. J., Universal anisotropic yield criterion based on

superquadratic functional representation : computational issues with applications, Proceedings of

the Third International Conference on Computational Plasticity, Part I, 1992, p 77-102.

[PIN 83] PINSKY P. M., ORTIZ M., PISTER K. S., Numerical integration of rate constitutive

equations in finite deformation analysis, Comp. Meth. in Appl. Mech. and Eng., 40, 1983, p. 137-

[PSA 87-89] PSA -RENAULT- SOLLAC, Simulation numerique de l'emboutissage des toles en

acier extra doux, Contrat CECA no F3.86-7210-KC/309, Rapports d'avancement no 1, 4 et 5,

, 1988 et 1989.

[RUB 83] RUBINSTEIN R., ATLURI S. N., Objectivity of incremental constitutive relations over

finite time steps in computational finite deformtion analyses, Comp. Meth. in Appl. Mech. and

Eng., 36, 1983, p. 277-290.

[SIM 85] SIMO J. C., TAYLOR R. L., Consistent tangent operators for rate-independent

elastoplasticity, Comp. Meth. in Appl. Mech. and Eng., 48, 1985, p. 101-118.

[SIM 86] SIMO J. C., TAYLOR R. L., A return mapping algorithm for plane stress elastoplasticity,

Int. J.for Num. Meth. in Eng., Vol. 22, 1986, p. 649-670.

Downloads

Published

1998-06-29

How to Cite

Boubakar, M. L. ., & Boisse, P. . (1998). Comportement elastoplastique anisotrope pour I’ analyse numerique des coques minces en grandes transformations. European Journal of Computational Mechanics, 7(6), 709–735. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3065

Issue

Section

Original Article