Accurate upper and lower error bounds by solving flux-free local problems in “stars”
Keywords:
error estimation, flux-free estimates, adaptivity, upper and lower bounds of the errorAbstract
Two implicit residual type estimators yielding upper bounds of the error are presented which do not require flux equilibration. One of them is based on the ideas introduced in [MAC 00, CAR 99, MOR 03, PRU 02]. The new approach introduced here is based on using the estimated error function rather than the estimated error norms. Once the upper bounds are computed, also lower bounds for the error are obtained with little supplementary effort.
Downloads
References
[AIN 93] AINSWORTH M., ODEN J.T., “A unified approach to a posteriori error estimation
using element residual methods”, Mathematics of Computation, vol. 65, 1993, p. 25-30.
[BAB 78] BABUSKA I., RHEINHOLD W.C., “Error estimates for adaptive finite element computations”,
SIAM Journal on Numererical Analysis, vol. 18, 1978, p. 736-754.
[BAN 85] BANK R.E., WEISER A., “Some a posteriori error estimators for elliptic partial
differential equations”, Mathematics of Computation, vol. 44, 1985, p. 283-301.
[BON 02] BONET J., HUERTA A., PERAIRE J., “The efficient computation of bounds for
functionals of finite element solutions in large strain elasticity”, Computer Methods in
Applied Mechanics and Engineering, vol. 191, 2002, p. 4807-4826.
[CAR 99] CARTENSEN C., FUNKEN S.A., “Fully reliable localised error control in FEM”,
SIAM Journal on Scientific Computing, vol. 21, num. 4, 1999/2000, p. 1465-1484.
[DIE 03] DÍEZ P., PARÉS N., HUERTA A., “Recovering lower bounds of the error postprocessing
implicit residual a posteriori error estimates”, International Journal for Numerical
Methods in Engineering, vol. 56, 2003, p. 1465-1488.
[HUE 00] HUERTA A., DÍEZ P., “Error Estimation Including Pollution Assessment for Nonlinear
Finite Element Analysis”, Computer Methods in Applied Mechanics and Engineering,
vol. 181, 2000, p. 21-41.
[MAC 00] MACHIELS L., MADAY Y., PATERA A.T., “A “Flux-Free” Nodal Neumann Subproblem
Approach to Output Bounds for Partial Differential Equations”, C. R. Acad. Sci.
Paris, Série I, vol. 330, num. 3, 2000, p. 249-254.
[MOR 03] MORIN P., NOCHETTO R., SIEBERT K., “Local problems on stars: a posteriori
error estimators, convergence and performance”, Mathematics of Computation, vol. 72,
, p. 1067–1097.
[PAR 97] PARASCHIVOIU M., PERAIRE J., PATERA A.T., “A posteriori finite element bounds
for linear-functional outputs of elliptic partial differential equations”, Computer Methods
in Applied Mechanics and Engineering, vol. 150, 1997, p. 289-312.
[PRU 99] PRUDHOMME S., ODEN J.T., “On Goal-Oriented Error Estimation for Elliptic Problems:
Application to the Control of Pointwise Errors”, Computer Methods in Applied Mechanics
and Engineering, vol. 176, 1999, p. 313-331.
[PRU 02] PRUDHOMME S., NOBILE F., CHAMOIN L., ODEN J.T., “Analysis of a subdomainbased
error estimator for finite element approximations of elliptic problems”, internal report,
num. 34, 2002, TICAM.