Error estimation for adaptive computations of shell structures

Authors

  • Pedro Diez Universitat Politecnica de Catalunya E. T.S. lngenieros de Caminos Barcelona Campus Nord, E-08034 Barcelona (Spain)
  • Antonio Huerta Universitat Politecnica de Catalunya E. T.S. lngenieros de Caminos Barcelona Campus Nord, E-08034 Barcelona (Spain)

Keywords:

Error estimation, adaptivity, thin shell elements, locking free formulation

Abstract

The finite element discretization of a shell structure introduces two kinds of errors: the error in the functional approximation and the error in the geometry approximation. The first is associated with the finite dimensional interpolation space and is present in any finite element computation. The latter is associated with the piecewise polynomial approximation of a curved surface and is much more relevant in shell problems than in any other standard 2D or 3D computation. In this work, a residual type error estimator introduced for standard finite element analysis is generalized to shell problems. This allows easily to account for the real original geometry of the problem in the error estimation procedure and precludes the necessity of comparing generalized stress components between non coplanar elements. That is, the main drawbacks of flux projection error estimators are avoided.

Downloads

Download data is not yet available.

References

[AYA 98] AYAD R., DHATT G., BATOZ J.L., "A new hybrid-mixed variational approach for

Reissner-Midlin plates. The MiSP model", International Journal for Numerical Methods

in Engineering, vol. 42, 1999, p. 1149-1179.

[BAU 97] BAUMANN M., SCHWEIZERHOF K., "Adaptive mesh generation of arbitrarily

curved shell structures", Computers & Structures, vol. 64, 1997, p. 209-220.

[CIR 98] CIRAK F., RAMM E., "A-posteriori error estimation and adaptivity for linear elasticity

using the reciprocal theorem", Computer Methods in Applied Mechanics and Engineering,

vol. 156, 1998, p. 351-362.

[DIE 97] DfEZ P., EGOZCUE 1.1., HUERTA A., "Analysis of the average efficiency of an error

estimator", Element Methods: Superconvergence, Post-processing and a Posteriori Error

Estimates", M. Kffiek et aL eds, Marcel Dekker, New York, 1997, p. 113-126.

[DIE 98] DfEZ P., EGOZCUE 1.1., HUERTA A., "A posteriori error estimation for standard

finite element analysis", Computer Methods in Applied Mechanics and Engineering,

vol. 163, 1998, p. 141-157.

[DIE 00] DfEZ P., ARROYO M., HUERTA A., "Adaptivity based on error estimation for viscoplastic

softening materials", Mechanics of Cohesive-Frictional Materials, vol. 5, 2000,

p. 87-112.

[DON 87] DONEA J., LAMAIN L.G., "A modified representation of transverse shear in C0

quadrilateral plate elements", Computer Methods in Applied Mechanics and Engineering,

vol. 63, 1987, p. 183-207.

[HUE 97] HUERTA A., DfEZ P., EGOZCUE 1.1., "Error estimation for linear and nonlinear

problems", Finite Element Methods: Superconvergence, Post-processing and a Posteriori

Error Estimates, M. Knzek eta!. eds, Marcel Dekker, New York, 1997, p. 183-194.

[HUE 00] HUERTA A., DfEZ P., "Error estimation including pollution assessment for nonlinear

finite element analysis", Computer Methods in Applied Mechanics and Engineering,

vol. 181, 2000, p. 21-41.

[HUG 98] HUGHES T.J.R., FEIJ60 G.R., MAZZEI L., QUINCY J.B., "The variational multiscale

method-a paradigm for computational mechanics", Computer Methods in Applied

Mechanics and Engineering, vol. 166, 1998, p. 3-24.

[LEE99] LEE C.K., SZE K.Y., Lo S.H., "On using degenerated solid shell elements in

adaptive refinement analysis", International Journal for Numerical Methods in Engineering,

vol. 45, 1999, p. 627-659.

[LI 95] LI L. Y., BETTESS P., "Notes on mesh optimal criteria in adaptive finite element

computations", Communications in Numerical Methods in Engineering, vol. 11, 1995,

p. 911-915.

[PER 96] PERIC D., HOCHARD CH., DUTKO M., OWEN D.R.J., ''Transfer operators for

evolving meshes in small strain elasto-plasticity", Computer Methods in Applied Mechanics

and Engineering, vol. 137, 1996, p. 331-344.

[RAY 83] RAVIART P.A., THOMAS J.M., Introduction a l'analyse numerique des equations

aux derivees partielles, Masson, Paris, 1983.

[RIC 97) RICCIUS J., SCHWEIZERHOF K., BAUMANN M., "Combination of adaptivity and

mesh smoothing for the finite element analysis of shell intersections", International Journal

for Numerical Methods in Engineering, vol. 40, 1997, p. 2459-2474.

Downloads

Published

2000-02-14

How to Cite

Diez, P. ., & Huerta, A. . (2000). Error estimation for adaptive computations of shell structures. European Journal of Computational Mechanics, 9(1-3), 49–66. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2927

Issue

Section

Original Article