Goal-oriented adaptivity for shell structures

Error assessment and remeshing criteria

Authors

  • Pedro Díez Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya Campus Nord UPC, 08034 Barcelona, Spain
  • Irene Morata Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya Campus Nord UPC, 08034 Barcelona, Spain
  • Antonio Huerta Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya Campus Nord UPC, 08034 Barcelona, Spain

Keywords:

goal-oriented adaptivity, remeshing criteria, shells, outputs of interest

Abstract

The reliable computation of shell structures requires a tool to assess and control the quality of the finite element solution. For practical purposes, the quality of the numerical solution must be measured using a quantity of engineering interest rather than in the standard energy norm. However, the assessment of the error in an output of interest is based on a standard energy norm error estimator. The standard error estimator has to be applied to both the original problem (primal) and a dual problem related with the selected engineering quantity. In shells with assumed-strain models, the combination of primal and dual error estimation is performed differently than in the continuum mechanics case. Moreover, a part from the goal-oriented error estimator, the adaptive process requires a remeshing criterion. This work introduces an specific remeshing criterion for goal-oriented adaptivity and its particularization to the context of shell elements.

Downloads

Download data is not yet available.

References

[AYA 98] AYAD R., DHATT G., BATOZ J. L., “A new hybrid-mixed variational approach for

Reissner-Midlin plates. The MiSP model.”, International Journal for Numerical Methods

in Engineering, vol. 42, 1998, p. 1149-1179.

[BAT 85] BATHE K. J., DVORKIN E. N., “A four-node plate bending element based on

Mindlin/Reissner plate theory and a mixed interpolation”, International Journal for Numerical

Methods in Engineering, vol. 21, 1985, p. 367-383 .

[CIR 98] CIRAK F., RAMM E., “A posteriori error estimation and adaptivity for linear elasticity

using the reciprocal theorem”, Computer Methods in Applied Mechanics and Engineering,

vol. 156, 1998, p. 351-362.

[DÍE ] DÍEZ P., HUERTA A., “Error estimation for adaptivity in assumed-strain models for

linear and nonlinear shells”, Submitted.

[DÍE 98] DÍEZ P., EGOZCUE J. J., HUERTA A., “A posteriori error estimation for standard

finite element analysis”, Computer Methods in Applied Mechanics and Engineering,

vol. 163, 1998, p. 141-157.

[DÍE 99] DÍEZ P., HUERTA A., “A Unified Approach to Remeshing Strategies for Finite Element

h-Adaptivity”, Computer Methods in Applied Mechanics and Engineering, vol. 176,

, p. 215-229.

[DÍE 00] DÍEZ P., HUERTA A., “Error estimation for adaptive computations of shell structures”,

Révue européenne des éléments finis, vol. 1-2-3, 2000, p. 49-66.

[DON 87] DONEA J., LAMAIN L. G., “A modified representation of transverse shear in C0

quadrilateral plate elements”, Computer Methods in Applied Mechanics and Engineering,

vol. 63, 1987, p. 183-207.

[DVO 84] DVORKIN E. N., BATHE K. J., “A continuum mechanics based four-node shell

element for general nonlinear analysis”, Engineering Computations, vol. 1, 1984, p. 77-

[HAN 00] HAN C. S., WRIGGERS P., “An h-adaptive method for elasto-plastic shell problems”,

Computer Methods in Applied Mechanics and Engineering, vol. 189, 2000, p. 651–

[HUE 00] HUERTA A., DÍEZ P., “Error estimation including pollution assessment for nonlinear

finite element analysis”, Computer Methods in Applied Mechanics and Engineering,

vol. 181, 2000, p. 21–41.

[HUG 87] HUGHES, T. J. R., The finite element method: Linear static and dynamic finite

element analysis, Mineola, New York Dover Publications, 1987.

[LAC 02] LACKNER R., MANG H. A., “A posteriori error estimation in non-linear FE analyses

of shell structures”, International Journal for Numerical Methods in Engineering,

vol. 53, 2002, p. 2329–2355.

[LEE 99] LEE C. K., SZE K. Y., LO S. H., “On using degenerated solid shell elements in

adaptive refinement analysis”, International Journal for Numerical Methods in Engineering,

vol. 45, 1999, p. 627–659.

[LI 95a] LI L. Y., BETTESS P., “Notes on mesh criteria in adaptative finite element computations”,

Comm. Numer. Methods Engrg., vol. 11, 1995, p. 911–915.

[LI 95b] LI L. Y., BETTESS P., BULL J. W., BOND T., APPLEGARTH I., “Theoretical formulations

for adaptative finit element computations”, Comm. Numer. Methods Engrg., vol. 11,

, p. 857–868.

[OÑA 93] OÑATE E., BUGEDA G., “A study of mesh optimality criteria in adaptative finite

element analysis”, Engrg. Comput., vol. 10, 1993, p. 307–321.

[PAR 97] PARASCHIVOIU M., PERAIRE J., PATERA A. T., “A posteriori finite element

bounds for linear-functional outputs of elliptic partial differential equations”, Computer

Methods in Applied Mechanics and Engineering, vol. 150, 1997, p. 289–312.

[PRU 99] PRUDHOMME S., ODEN J. T., “On goal-oriented error estimation for elliptic problems:

Application to the control of pointwise errors”, Computer Methods in Applied Mechanics

and Engineering, vol. 176, 1999, p. 313–331.

Downloads

Published

2003-06-11

How to Cite

Díez, P. ., Morata, I. ., & Huerta, A. . (2003). Goal-oriented adaptivity for shell structures: Error assessment and remeshing criteria. European Journal of Computational Mechanics, 12(6), 691–715. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2407

Issue

Section

Original Article