Locking in the incompressible limit: pseudo-divergence-free element free Galerkin

Authors

  • Yolanda Vidal Departament de Matemàtica Aplicada III, Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain.
  • Antonio Huerta Departament de Matemàtica Aplicada III, Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya, Jordi Girona 1, E-08034 Barcelona, Spain
  • Pierre Villon Laboratoire de Mécanique Roberval, UMR UTC-CNRS Université de Technologie de Compiègne, BP 20529, 60205 Compiègne cedex, France.

Keywords:

Locking, Element Free Galerkin, Diffuse derivatives, Moving Least Squares, Incompressible flow, LBB condition

Abstract

Locking in finite elements has been a major concern since its early developments and has been extensively studied. However, locking in mesh-free methods is still an open topic. Until now the remedies proposed in the literature are extensions of already developed methods for finite elements. Here a new approach is explored and an improved formulation that asymptotically suppresses volumetric locking for the EFG method is proposed. The diffuse divergence converges to the exact divergence. Since the diffuse divergence-free condition can be imposed a priori, new interpolation functions are defined that asymptotically verify the incompressibility condition. Modal analysis and numerical results for classical benchmark tests in solids and fluids corroborate this issue.

Downloads

Download data is not yet available.

References

Arnold, D. N., Brezzi, F., Cockburn, B. and Marini, L. D. (2001/02), ‘Unified analysis of discontinuous

Galerkin methods for elliptic problems’, SIAM J. Numer. Anal. 39(5), 1749–1779.

Askes, H., de Borst, R. and Heeres, O. (1999), ‘Conditions for locking-free elasto-plastic analyses

in the element-free galerkin method’, Comput. Methods Appl. Mech. Engng. 173, 99–

Babuska, I., Banerjee, U. and Osborn, J. E. (2002), Meshfree Methods for Partial Differential

Equations. Lecture Notes in Computational Science and Engineering, Springer, chapter

Meshless and Generalized Finite Element Methods: A Survey of Some Major Results.

Babuska, I. and Suri, M. (1992), ‘Locking effects in the finite element approximation of elasticity

problems’, Numerische Mathematik 62.

Becker, R. (2002), ‘Mesh adaptation for dirichlet flow control via nitsche’s method’, Communications

in numerical methods in engineering 18, 669–680.

Belytschko, T., Krongauz, Y., Fleming, M., Organ, D. and Liu, W. K. (1996), ‘Smoothing and

accelerated computations in the element free galerkin method’, Journal of Computational

and Applied Mathematics 74, 111–126.

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. (1996), ‘Meshless methods:

an overview and recent developments’, Comput. Methods Appl. Mech. Engng. 139, 3–47.

Belytschko, T., Liu, W. K. and Moran, B. (2000), Nonlinear finite elements for continua and

structures, John Wiley & Sons Ltd., Chichester.

Belytschko, T., Lu, Y. Y. and Gu, L. (1994), ‘Element free galerkin methods’, Int. J. Numer.

Meth. Engng. 37, 229–256.

Belytschko, T. and Tabarra, M. (1996), ‘Dynamic fracture using element-free galerkin methods’,

Int. J. Numer. Meth. Engng. 39, 923–938.

Chen, J. S., Yoon, S.,Wang, H. and Liu,W. K. (2000), ‘An improved reproducing kernel particle

method for nearly incompressible finite elasticity’, Comput. Methods Appl. Mech. Engng.

, 117–145.

Dolbow, J. and Belytschko, T. (1999), ‘Volumetric locking in the element free galerkin method’,

Int. J. Numer. Meth. Engng. 46, 925–942.

Donea, J. and Huerta, A. (2003), Finite Element Methods for Flow Problems, John Wiley &

Sons Ltd., Chichester.

Duarte, C. A. M. and Oden, J. T. (1995), Hp clouds - a meshless method to solve boundary

value problems, Technical report, The University of Texas, Austin.

Duarte, C. A. M. and Oden, J. T. (1996), ‘A h-p adaptive method using clouds’, Comp. Meth.

Appl. Mech. Engng. 139(139), 237–262.

Girault, V. and Raviart, P.-A. (1986), Finite element methods for Navier-Stokes equations: Theory

and algorithms, Springer-Verlag, Berlin.

Griebel, M. and Schweitzer, M. A. (2002), A particle-partition of unity method. part v: Boundary

conditions, Technical report, Institut fürAngewandte Mathematik, Universität Bonn.

Hermann, L. (1965), ‘Elasticity equations for nearly incompressible materials by a variational

theorem’, AIAA Journal 3, 1896–1900.

Huerta, A. and Fernández-Méndez, S. (2000), ‘Enrichment and coupling of the finite element

and meshless methods’, Int. J. Numer. Meth. Engng. 48, 1615–1636.

Huerta, A. and Fernández-Méndez, S. (2001), ‘Locking in the incompressible limit for the

element free galerkin method’, Int. J. Numer. Meth. Engng. 51(11), 1361–1383.

Hughes, T. J. R. (2000), The finite element method: linear static and dynamic finite element

analysis, Dover Publications Inc., New York. Corrected reprint of the 1987 original

[Prentice-Hall Inc., Englewood Cliffs, N.J.].

Liu, W. K., Belytschko, T. and Oden, editors, J. T. (1996), ‘Meshless methods’, Comput. Methods

Appl. Mech. Engng. 139, 1–440.

Liu, W. K., Chen, Y., Jun, S., Chen, J. S., Belytschko, T., Pan, C., Uras, R. A. and Chang, C. T.

(1996), ‘Overview and applications of the reproducing kernel particle methods’, Archives

of Computational Methods in Engineering, State of the Art Reviews 3, 3–80.

Liu, W. K., Chen, Y., Uras, R. A. and Chang, C. T. (1996), ‘Generalized multiple scale reproducing

kernel particle methods’, Comput. Methods Appl. Mech. Engng. 139, 91–158.

Liu, W. K., Jun, S., Adee, J. and Belytschko, T. (1995), ‘Reproducing kernel particle methods

for structural dynamics’, Int. J. Numer. Meth. Engng. 38, 1655–1679.

Liu, W. K., Jun, S. and Zhang, Y. F. (1995), ‘Reproducing kernel particle methods’, Int. J.

Numer. Meth. Fluids 20, 1081–1106.

Liu,W. K., Li, S. and Belytschko, T. (2000), ‘Moving least square reproducing kernel methods.

(i) methodology and convergence’, Comput. Methods Appl. Mech. Engng. 143, 113–154.

Lu, Y. Y., Belytschko, T. and Gu, L. (1994), ‘A new implementation of the element free galerkin

method’, Comp. Meth. Appl. Mech. Engng. 113(113), 397–414.

Lucy, L. (1977), ‘A numerical approach to testing the fission hypothesis’, Aston. J. 82, 1013–

Melenk, J. M. and Babuska, I. (1996), ‘The partition of unity finite element method: basic

theory and applications’, Comput. Methods Appl. Mech. Engng. 139, 289–314.

Monaghan, J. J. (1988), ‘An introduction to sph’, Comput.Phys. Commun. 48, 89–96.

Nayroles, B., Touzot, G. and Villon, P. (1992), ‘Generating the finite element method: diffuse

approximation and diffuse elements’, Computational Mechanics 10, 307–318.

Oden, J. T. and Jacquotte, O. P. (1984), ‘Stability of some mixed finite element methods for

stokesian flows’, Comput. Methods Appl. Mech. Engng. 43, 231–247.

Randles, P. W. and Libersky, L. D. (1996), ‘Smoothed particle hydrodynamics: some recent

improvements and applications’, Comp. Meth. Appl. Mech. Engng. 139, 375–408.

Stenberg, R. (1995), ‘On some techniques for approximating boundary conditions in the finite

element method’, J. Comp. Appl. Maths. 63, 139–148.

Suri, M. (1996), ‘Analytic and computational assessment of locking in the hp finite element

method’, Comput. Methods Appl. Mech. Engng. 133, 347–371.

Villon, P. (1991), Contribution à l’optimisation, Thèse présentée pour l’obtention du grade de

docteur d’état, Université de Technologie de Compiègne, Compiègne, France.

Zhu, T. and Atluri, S. N. (1998), ‘A modified collocation method and a penalty formulation for

enforcing the essential boundary conditions in the element free galerkin method’, Computational

Mechanics 21, 211–222.

Downloads

Published

2002-04-16

How to Cite

Vidal, Y., Huerta, A. ., & Villon, P. . (2002). Locking in the incompressible limit: pseudo-divergence-free element free Galerkin. European Journal of Computational Mechanics, 11(7-8), 869–892. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2519

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 > >>