Instabilité et bifurcation du soufflage de membranes hyperélastiques

Authors

  • Nicolas Chevaugeon Laboratoire de Mécanique et Matériaux, Division Structures École Centrale de Nantes 1 rue de la Noë, BP 92101 F-44321 Nantes Cedex 3
  • Gilles Marckmann Laboratoire de Mécanique et Matériaux, Division Structures École Centrale de Nantes 1 rue de la Noë, BP 92101 F-44321 Nantes Cedex 3
  • Erwan Verron Laboratoire de Mécanique et Matériaux, Division Structures École Centrale de Nantes 1 rue de la Noë, BP 92101 F-44321 Nantes Cedex 3
  • Bernard Peseux Laboratoire de Mécanique et Matériaux, Division Structures École Centrale de Nantes 1 rue de la Noë, BP 92101 F-44321 Nantes Cedex 3

Keywords:

membranes, hyperelasticity, inflation, instability, bifurcation

Abstract

This article deals with the post-bifurcating behaviour of inflated hyperelastic membranes. Axisymmetrical and three dimensional formulations are studied. In both cases, the resulting algebraic system is solved by the combining classical Newton-Raphson scheme and the arc-length continuation method. The emphasize is laid on singular points and secondary paths are pointed out. Finally, numerical examples are considered in order to illustrate the developments.

Downloads

Download data is not yet available.

References

[ALE 71] ALEXANDER H., « The tensile instability of initially spherical balloons », Int. J.

Engng Sci., vol. 9, 1971, p. 151-162.

[BAT 79] BATOZ J. L., DHATT G., « Incremental displacement algorithms for nonlinear problems

», Int. J. Num. Meth. Engng, vol. 14, 1979, p. 1262-1267.

[BEA 87] BEATTY M. F., « Topics in finite elasticity : hyperelasticity of rubber, elastomers,

and biological tissues - with examples », Appl. Mech. Rev., vol. 40, n 12, 1987, p. 1699-

[CHA 87] CHARRIER J. M., SHRIVASTAVA S., WU R., « Free and constrained inflation of

elastic membranes in relation to thermoforming - Axisymmetric problems », J. Strain Analysis,

vol. 22, n 2, 1987, p. 115-125.

[DUF 86] DUFFET G. A., REDDY B. D., « The solution of multi-parameter systems of equations

with application to problems in nonlinear elasticity », Comp. Meth. Appl. Mech.

Engng, vol. 59, 1986, p. 179-213.

[GRE 60] GREEN A. E., ADKINS J. E., Large elastic deformations, The Clarendon Press,

Oxford, 1960.

[HAU 80] HAUGHTON D. M., « Post-bifurcation of perfect and imperfect spherical elastic

membranes », Int. J. Solids Structures, vol. 16, 1980, p. 1123-1133.

[HSU 94] HSU F. P. K., SCHWAB C., RIGAMONTI D., HUMPHREY J. D., « Identification of

response functions from axisymmetric membrane inflation tests : implications for biomechanics

», Int. J. Solids Struct., vol. 31, n 24, 1994, p. 3375-3386.

[KHA 92] KHAYAT R. E., DERDOURI A., GARCIA-RÉJON A., « Inflation of an elastic cylindrical

membrane : non-linear deformation and instability », Int. J. Solids Structures,

vol. 29, n 1, 1992, p. 69-87.

[KHA 94] KHAYAT R. E., DERDOURI A., « Inflation of hyperelastic cylindrical membranes

as applied to blow moulding. part I. axisymmetric case », Int. J. Num. Meth. Eng., vol. 37,

, p. 3773-3791.

[KYR 91] KYRIAKIDES S., CHANG Y., « The initiation and propagation of a localized instability

in an inflated elastic tube », Int. J. Solids Struct., vol. 27, n 9, 1991, p. 1085-1111.

[MAR 01] MARCKMANN G., VERRON E., PESEUX B., « Finite element analysis of blow

molding and thermoforming using a dynamic explicit procedure », Polym. Eng. Sci.,

vol. 41, n 3, 2001, p. 426-439.

[NEE 77] NEEDLEMAN A., « Inflation of spherical rubber balloons », Int. J. Solids Structures,

vol. 13, 1977, p. 409-421.

[REE 95] REESE S., WRIGGERS P., « A finite element method for stability problems in finite

elasticity », Int. J. Num. Meth. Eng., vol. 38, 1995, p. 1171-1200.

[SHI 96] SHI J.,MOITA G. F., « The post-critical analysis of axisymmetric hyper-elastic membranes

by the finite element method », Comput. Methods Appl. Mech. Engng, vol. 135,

, p. 265-281.

[SOK 97] SOKÓL T., WITKOWSKI M., « Some experiences in the equilibrium path determination

», Comput. Assist. Mech. Engng Sci., vol. 4, 1997, p. 189-208.

[VER 99] VERRON E., KHAYAT R. E., A. A. D., PESEUX B., « Dynamic inflation of hyperelastic

spherical membranes », J. Rheol., vol. 43, n 5, 1999, p. 1083-1097.

[VER 01a] VERRON E., MARCKMANN G., « An axisymmetric B-spline model for the nonlinear

inflation of rubberlike membranes », Comput. Meth. Appl. Mech. Engng, vol. 190,

n 46-47, 2001, p. 6271-6289.

[VER 01b] VERRON E., MARCKMANN G., PESEUX B., « Dynamic inflation of non-linear

elastic and viscoelastic rubberlike membranes », Int. J. Num. Meth. Engng, vol. 50, n 5,

, p. 1233-1251.

[YAN 70] YANG W. H., FENG W. W., « On axisymmetrical deformations of nonlinear membranes

», J. Appl. Mech. ASME, vol. 37, 1970, p. 1002-1011.

Downloads

Published

2002-12-05

How to Cite

Chevaugeon, N. ., Marckmann, G. ., Verron, E. ., & Peseux, B. . (2002). Instabilité et bifurcation du soufflage de membranes hyperélastiques. European Journal of Computational Mechanics, 11(2-4), 479–492. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2631

Issue

Section

Original Article