Etude dynamique linéaire et non linéaire d’une poutre couplée avec un fluide
Keywords:
fluid-structure interaction, finite element coupling, modal analysis, non linear temporal analysis, mode coupling, added massAbstract
This paper deals with dynamic study of an elastic beam coupled to an incompressible fluid with free surface. To begin with, a modal analysis of the coupled fluidstructure problem by finite element coupling is carried out. Fluid-structure interaction effects are highlighted. Then, a dynamic analysis is performed, using a non-linear model in which the geometric non-linearity due to the axial force generated by stretching of the middle surface is taken into account. The coupled fluid-structure system is subjected to an imposed transverse acceleration. The problem is solved with a finite element method with a non-linear implicit scheme, the fluid effects are taken into account with an added mass operator which is discretised with a finite element technique. A numerical study is then carried out and shows the effect of geometrical non linearity as the imposed acceleration amplitude is increased. A comparison of non-linear behavior with fluid coupling is then investigated.
Downloads
References
Axisa F., Modélisation des systèmes mécaniques, Interactions fluide/structure, Hermès, 2001.
Barshyam G.R., Prathap G., “Galerkin Finite Element Method for Non-Linear Beam
Vibrations”, Journal of Sound and Vibration, vol. 72, 1972, p. 191-203.
Bathe K.J., Wilson E.L., Numerical methods in Finite Element Analysis, Prentice-Hall, 1976.
Belytchko T., Liu W.K., Morand B., Non-Linear Finite Element for Continua and Structures,
Wiley & Sons, 2000.
Cho J.R., Song J.M., “Assessment of Classical Numerical Models for the Separate Fluid
Structure Modal Analysis”, Journal of Sound and Vibration, vol. 239, 2001, p. 995-1012.
Crisfield M., Non Linear Finite Element Analysis of Solid and Structures, Wiley & Sons,
De Langre E., Fluides et Solides, Editions de l’Ecole Polytechnique, 2001.
Dhatt G., Touzot G., Une présentation de la méthode des éléments finis, Maloine, 1984.
Dubigeon S., Mécanique des milieux continus, Lavoisier, 1998.
Everstine G.C., “A Symmetric Potential Formulation for Fluid-Structure Interaction”, Journal
of Sound and Vibration, vol. 79, n° 1, 1981, p. 157-190.
Fritz R.J., “The Effects of Liquids on the Dynamic Motion of Immersed Solids”, Journal of
Engineering for the Industry, 1972, p. 167-173.
Gibert R.J., Vibration des structures, Interaction avec les fluides, Sources d’excitation
aléatoires, Collection de la Direction des Etudes et Recherches d’Electricité de France,
vol. 69, Eyrolles, 1986.
Hino J., Yoshimura Y., Ananthanarayana N., “Vibration Analysis of Non-Linear Beams
Subjected to a Moving Load Using the Finite Element Method”, Journal of Sound and
Vibration, vol. 100, 1985, p. 477-491.
Hughes T.J.R, Belytschko T., “A Précis of Developments in Computational Methods for
Transient Analysis”, Journal of Applied Mechanics, vol. 50, 1983, p. 1033-1041.
Larbi W., Deü J.F., Ohayon R., « Réponse transitoire de structures couplées avec un liquide
interne », 7e Colloque national en calcul des structures, vol. 1, 2001, p. 271-276.
Lascaux P., Theodor R., Analyse numérique matricielle appliquée à l’art de l’ingénieur,
Masson, 1987.
Makerle J., “Fluid-Structure Interaction Problems, Finite Element Approach and Boundary
Elements Approaches. A Bibliography”Finite Elements in Analysis and Design, vol. 31,
, p. 231-240.
Mokthari M., Meshba A., Apprendre et maîtriser Matlab, Springer Verlag, 1997.
Morand H. J.P., Ohayon R., Fluid Structure Interaction, Wiley & Sons, 1995.
Newmark M.N., « A Method of Computation for Structural Dynamics », Journal of the
Engineering Mechanics Division, vol. 85, 1954, p. 67-94.
Ohayon R., Valid R., “True Symmetric Formulation for Fluid-Structure Interaction in
Bounded Domains, Finite Elements Results”, Numerical Methods in Coupled Systems,
Ed. Lewis R.W., Bettes P., Hinton E., 1983, p. 293-325.
Peseux B., Contribution à l’étude de structures partiellement ou totalement immergée en
matériau homogène ou en composite, Thèse de Doctorat d’état, Ecole Nationale
Supérieure de Mécanique de Nantes, 1989.
Rajakumar C., Rogers C.G., “The Lanczos Algorithm Applied to Unsymmetric Generalized
Eigenvalue Problem”, International Journal of Numerical Methods in Engineering,
vol. 32, 1991, p. 1009-1026.
Sandberg G., Göransson P.A., “A Symmetric Finite Element Formulation for Acoustic Fluid-
Structure Interaction Analysis”, Journal of Sound and Vibration, vol. 123, n° 3, 1988,
p. 507-515.
Sigrist J.-F., Lainé C., Peseux B., “Choice and Limits of a Linear Fluid Model for the
Numerical Study in Dynamic Fluid Structure Interaction”, Pressure Vessel and Piping,
Cleveland, 24-27 July 2003.
Sigrist J.-F., Lainé C., Peseux B., « Méthodes numériques linéaires et non linéaires pour la
simulation d’un problème couplé fluide/structure avec surface libre », 14e colloque
Vibrations, chocs et bruit, Lyon, 16-18 juin 2004.
Sigrist J.-F., Lainé C., Peseux B., “Dynamic Analysis of a Coupled Fluid Structure Problem
with Fluid Sloshing”, Pressure Vessel and Piping, Sans Diego, 26-29 July 2004.
Sigrist J.-F., Modélisation et simulation numérique d’un problème couplé fluide/structure non
linéaire, Application au dimensionnement de structures nucléaires de propulsion navale,
Thèse de Doctorat, Ecole Centrale de Nantes, 2004.
Sigrist J.-F., Lainé C., Peseux B., “Dynamic Analysis of a Coupled Fluid-Structure Problem
by Explicit Finite Element-Finite Volume Coupling”, Pressure Vessel and Piping,
Denver, 17-22 July 2005.
Sigrist J.-F., Conessa, V., “Experimental and Numerical Analysis of a Coupled Fluid-
Structure System Subjected to Dynamic Acceleration”, Pressure Vessel and Piping,
Denver, 17-22 July 2005.
Sturm A.J., Song C., “The Effect of Submergence on Structural response in Confined Pools”,
Nuclear Engineering and Design, vol. 60, 1980, p. 287-296.
Subbaraj K., Dokainish M.A., “A Survey of Direct Time-Integration Methods in
Computational Structural Dynamics-I: Implicit Methods”, Computers & Structures,
vol. 32, 1989, p. 1387-1401.
Washizu K., Variational Methods in Elasticity and Plasticity, Pergamon, 1982.
Zienkiewicz O.C., Taylor R.L., The Finite Element Method, Basic Formulation and Linear
Problems, Mac Graw Hill, 1989.