Une condition aux limites simple pour les problemes non bornes

Authors

  • Peter Bettes School of Engineering, University of Durham, Science Laboratories South Road, Durham, DHJ 3LE, Great Britain
  • Jacqueline A. Bettes Information Technology Service, University of Durham South Road, Durham, DHJ 3LE, Great Britain
  • Bernard Peseux Laboratoire de Mecanique et Materiaux, Ecole Centrale 1 Rue de Ia Noi!, 44072 Nantes Cedex 03 France

Keywords:

finite elements, unbounded domain, elasticity, potential problems

Abstract

We describe a new and simple boundary condition, which can be used in the finite element analysis of static unbounded problems of elasticity and potential. From the classical series solutions in two and three dimensions of Laplace's equation, we develop a set of appropriate boundary conditions and using them as boundary conditions on the exterior of a finite element mesh. We present some results in two and three dimensions for elastic problems.

 

Downloads

Download data is not yet available.

References

[BAY 79] A. BAYLISS et E. TURKEL, "Radiation Boundary Conditions for Wave-like

Equations" , 1979, !CASE report No 79-26.

[BAY 80-a] A. BAYLISS , M. GUNZBERGER et E. TuRKEL, "Boundary Conditions for the

Numerical Solution of Elliptic Equations in Exterior Regions" , 1980, ICASE report

w 80-1.

[BAY 80-b] A. A. BAYLISS et E. TuRKEL, "Radiation Boundary Conditions for Wave-like

Equations" , 1980, Communications on Pure and Applied Mathematics, Vol 33,

pp 707-725.

[BAN 84] K. BANDO, P. BETIESS et C.R.I. EMSON, "The Effectiveness of Dampers for the

Analysis of Exterior Scalar Wave Diffraction by Cylinders and Ellipsoids", 1984,

lnternat. Journ. Num. Meth. Fluids, Yol4, pp 599-617.

[BET 92] P. BETTESS , Infinite Elements, 1992, Penshaw Press, Sunderland, U.K.,

ISBN 09518806-0-8.

[BOU 1885] J. BOUSSINESQ, "Application des potentiels a !'etude de l'equilibre et du

mouvement des solides elastiques", 1885, Gauthiers-Villars, Paris.

[BOU 1878] J. BoussiNESQ, "Equilibre d'elasticite d'un sol isotrope sans pesanteur,

supportant differents poids", 1878, Comptes Rendus de l'Academie des Sciences

Franraise, Vol 86, pp 1260-1263.

[BOU 1892] J. BoussiNESQ, "Des perturbations locales que produit au-dessous d'elle une

forte charge, repartie uniformement Ie long d'une droite normale aux deux bords, a la

surface superieure d'une poutre rectangulaire et de longueur indetinie posee de champ

soit sur un sol horizontal, soit sur deux appuis transversaux equidistants de la charge",

, Comptes Rendus de I'Academie des Sciences Fran~aise, Vol 114, pp 1510-

[BRE 80] C.A. BREBBIA and S. WALKER, "Boundary Element Techniques in Engineering",

, Newnes-Butterworth, London.

[COU 62] R COURANT and D. HILBERT, Methods of Mathematical Physics, 1962, Pl96

Vol. 1, Wiley Interscience, New York.

[FLA 1892] FLAMANT, "Sur la repartition des pressions dans un solide rectangulaire charge

transversalement", 1892, Comptes Rendus de l'Academie des Sciences Franraise,

Vol 114, pp 1465-1468.

[LYS 69] J. LYSMER & R.L. KUHLEMEYER, "Finite Dynamic Model for Infinite Media",

, Journ. of the Engin. Mechanics Division, ASCE, Yol.95, N EM4, pp 859-877.

[RIC ll] L.F. RICHARDSON, "The Approximate Arithmetical Solution by Finite

Differences of Physical Problems Involving Differential Equations, with an

Application to the Stresses in a MasonaryDam", 1911, Trans. Roy. Soc., A21 0,

pp 307-357.

[STA 94] A.A. STAMOS, 0. YON ESTORFF, H. ANTES & D.E. BESKOS, "Vibration Isolation

in Road-Tunnel Traffic Systems", 1994, Int. Joum. for Engng. Analysis and Design,

Vol 1, pp 109-121.

[TIM 51] S. TIMOSHENKO et J.N. GOODIER, Theory of Elasticity, 1951, McGraw-Hill,

New York.

[ZIE 77] O.C. ZIENKIEWICZ, D.W. KELLY and P. BETTESS, "The Coupling of the Finite

Element Method and Boundary Solution Procedures", 1977, Int. Joum. Num. Meth.

Engng. bf 11, pp 355-375.

[ZIE 79] O.C. ZIENKIEWICZ, D.W. KELLY and P. BEITESS, "Marriage a Ia mode- the Best of

Both Worlds (Finite Elements and Boundary Integrals)" Chapter 5 of Energy Methods

in Finite Element Analysis , (Eds R. Glowinski, E.Y. Rodin and O.C. Zienkiewicz),

, pp 81-107, Wiley, London and New York.

[ZIE 88] O.C. ZIENKIEWICZ and R.L. TAYLOR, The Finite Element Method, 1988, Volume

l, McGraw-Hill, Maidenhead.

[ZIE 91] O.C. ZIENKIEWICZ and R.L. TAYLOR, The Finite Element Method, 1991 , Volume

, McGraw-Hill, Maidenhead.

Downloads

Published

1996-03-01

How to Cite

Bettes, P., Bettes, J. A. ., & Peseux, B. . (1996). Une condition aux limites simple pour les problemes non bornes. European Journal of Computational Mechanics, 5(3), 271–295. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3517

Issue

Section

Original Article