Controle et adaptation des calculs elements finis pour les problemes de contact unilateral

Authors

  • Patrice Coorevits *Laboratoire de Mecanique et Technologie ENS de Cachan I CNRS I Universite P. et M. Curie 61 avenue du President Wilson, 94235 Cachan Cedex - FRANCE
  • Patrick Hild Mathernatiques pour l'lndustrie et la Physique Unite mixte de recherches CNRS-UPS-INSAT (U.M.R. 5640) Universite Paul Sabatier, 118 route de Narbonne 31062 Toulouse Cedex 4- FRANCE
  • Jean-Pierre Pelle *Laboratoire de Mecanique et Technologie ENS de Cachan I CNRS I Universite P. et M. Curie 61 avenue du President Wilson, 94235 Cachan Cedex - FRANCE

Keywords:

contact, adaptivity, error in constitutive relation, finite element computation

Abstract

In this paper, we present an error estimator for the contact problem of an elastic body on a rigid foundation in elasticity or Signorini's problem. The estimator is based on the concept of error in the constitutive relation and on techniques of admissible fields building. It is carrying into effect with a particular technique in order to take into account the contact. The convergence rate of this estimator is studied. By using procedures of mesh adaptivity previously developed, we show an example of optimized computations for discretizations with 3-nodes triangles.

Downloads

Download data is not yet available.

References

[BAB 78] BABUSKA I., RHEINBOLDT W.C., « Error estimates for adaptive finite

element computation», Siam J. Num. Anal., vol. 15, p. 736-754, 1978.

[BEN 97] BEN BELGACEM F., HILD P., LABORDE P., « Approximation of the

unilateral contact problem by the mortar finite element method », C. R. Acad. Sci. Paris,

Serle I, vol. 324, p. 123-127, 1997.

[BEN 98] BEN BELGACEM F., HILD P., LABORDE P., « Extension of the Mortar

Finite Element method to a variational Inequality Modelling Unilateral Contact », to

appear in Math. Mod. Meth. in Appl. Sci., 1998.

[COO 94] COOREVITS P., LADEVEZE P., PELLE J.P., «Mesh optimization for

problems with steep gradients», Eng. Comp., vol. 11, p. 129-144, 1994.

[COO 95] COOREVITS P., LADEVEzE P., PELLE J.P., « An automatic procedure for

finite element analysis in 2D elasticity», Comp. Meth. Appl. Mech. Eng., vol. 121, p. 91-

, 1995.

[COO 97] COOREVITS P., Sur l'automatisation des analyses par elements finis, Memoire

d'habilitation a diriger les recherches de l'Universite Pierre et Marie Curie, Paris VI,

[DUV 72] DUV AUT G., LIONS J.-L., Les inequations en mecanique et en physique,

Dunod, 1972.

[FIC 72] FICHERA G., in Encyclopedia of Physics , Edited by S. Flugge, vol. Vla/2,

Springer-Verlag, Berlin, p. 391-424, 1972.

[FRA 56] FRANK M., WOLFE P., « An algorithm for quadratic programing», Naval

Research Logist Quarterly, vol. 3, p. 95-110, 1956.

[HAS 96] HAS LINGER J., HLAVACEK I., NECAS J., « Numerical Methods for

Unilateral Problems in Solid Mechanics» in Handbook of Numerical Analysis, vol. IV,

Part 2, Eds. P.G. Ciarlet and J.L. Lions, North Holland, 1996.

[HIL 98] HILD P., Probl~mes de contact unilateral et maillages elements finis

incompatibles, Th~se de l'Universite Paul Sabatier, Toulouse 3, 1998.

[KIK 88] KIKUCHI N., ODEN J. T., «Contact Problems in Elasticity: A Study of

Variational Inequalities and Finite Element Methods», SIAM, 1988.

[LAD 75] LADEVEZE P., Comparaison de modeles de milieux continus, Th~se de

l'Universite Pierre et Marie Curie, Paris VI, 1975.

[LAD 86] LADEVEZE P., COFFIGNAL G., PELLE J.-P., «Accuracy of elastoplastic and

dynamic analysis » in Accuracy estimates and adaptative refinements in Finite Element

computations, eds. Babuska, Gago, Oliveira, Zienkiewicz J. Wiley, p. 181-203, 1986.

[LAD 91] LADEVEZE P., PELLE J.-P., ROUGEOT P., « Error estimates and mesh

optimization for FE computation», Eng. Comp., vol. 8, p. 69-80, 1991.

[LAD 96] LADEVEZE P., Mecanique non lineaire des structures, Editions Herm~s. 1996.

[MIN 83] MINOUX M., Programmation mathematique, theorie et algorithmes, Tome 1,

Dunod, 1983.

[MOR 74] MOREAU J.J., On unilateral constraints,friction and plasticity, New variational

Techniques in Mathematical Physics, Capriz G., Stampacchia G. eds, Edizioni

Cremonese, Roma, p. 175-322, 1974.

[PRA 47] PRAGER W., SYNGE J.L., «Approximations in elasticity based on the concept

of function space», Quart. Appl. Math., vol. 5, p. 261-269, 1947.

[WRI 94] WRIGGERS P., SCHERF 0., CARTENSEN C., Adaptive techniques for the

contact of elastic bodies in recent developments in finite element analysis, eds. Hughes,

Onate, Zienkiewicz (CIMNE), p. 78-86, 1994.

[ZIE 87] ZIENKIEWICZ O.C., ZHU J.Z., « A simple error estimator and adaptive

procedure for practical engineering analysis », Int. J. Num. Meth. in Eng., vol. 24, p. 337-

, 1987.

Downloads

Published

1999-01-27

How to Cite

Coorevits, P. ., Hild, P. ., & Pelle, J.-P. . (1999). Controle et adaptation des calculs elements finis pour les problemes de contact unilateral. European Journal of Computational Mechanics, 8(1), 7–29. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3035

Issue

Section

Original Article