Neural Network Identification and Direct Adaptive Fuzzy Neural Network (DAFNN) Controller for Unknown Nonlinear Non-affine Pneumatic Servo System
DOI:
https://doi.org/10.13052/ijfp1439-9776.2211Keywords:
Adaptive control, fuzzy neural network control, trajectory tracking control, non-affine pneumatic servo system, neural network identifierAbstract
In this paper, a direct adaptive fuzzy neural network (DAFNN) controller for trajectory tracking control of the non-linear non-affine pneumatic servo system is presented. First, using a neural network identifier, the non-linear dynamics of a real pneumatic servo system is simulated. By comparing the output of the neural network and the output of the experimental setup, it is observed that the non-linear pneumatic actuator system is well-identified using neural networks. By incorporating the Lyapunov stability theorem, the adaptive laws for the parameters of the controller are obtained, parameter boundedness and stability of the closed-loop system are guaranteed. Finally, practical results are successfully implemented for trajectory tracking control of the pneumatic servo system, in which the effect of the simultaneous updating of the antecedent and consequent’s parameters of the fuzzy neural network controller has been investigated. The tracking error ±1.3mm and ±1 mm for proposed updating method compared to ±2.5mm and ±3.5mm, for a case that the weigh parameters are merely adjusted, are obtained. The results indicate the proposed adjustment method improves the performance of the controller in the presence of unknown nonlinearities and dynamics uncertainty.
Downloads
References
Ahn, K. K., & Anh, H. P. H. (2009). Design and implementation of an adaptive recurrent neural networks (ARNN) controller of the pneumatic artificial muscle (PAM) manipulator. Mechatronics, 19(6), pp. 816-828.
Al-Saloum, S., Taha, A., & Chouaib, I. (2017). Parameter identification of a jet pipe electro-pneumatic servo actuator. International Journal of Fluid Power, 18(1), pp. 49-69.
Bone, G. M., & Ning, S. (2007). Experimental comparison of position tracking control algorithms for pneumatic cylinder actuators. IEEE/ASME Transactions on mechatronics, 12(5), pp. 557-561.
Carneiro, J. F., & de Almeida, F. G. (2012). A neural network based nonlinear model of a servopneumatic system. Journal of Dynamic Systems, Measurement, and Control, 134(2), p 024502.
Chen, S.-Y., & Gong, S.-S. (2017). Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control. Mechanical Systems and Signal Processing, 94, pp. 111-128.
Gao, Q., Feng, G., Wang, Y., & Qiu, J. (2012). Universal fuzzy models and universal fuzzy controllers for stochastic nonaffine nonlinear systems. IEEE Transactions on Fuzzy systems, 21(2), pp. 328-341.
Gao, X., & Feng, Z.-J. (2005). Design study of an adaptive Fuzzy-PD controller for pneumatic servo system. Control Engineering Practice, 13(1), pp. 55-65.
Hajji, S., Ayadi, A., Smaoui, M., Maatoug, T., Farza, M., & M'saad, M. (2019). Position control of pneumatic system using high gain and backstepping controllers. Journal of Dynamic Systems, Measurement, and Control, 141(8), p 081001.
Han, H.-G., Wu, X.-L., Liu, Z., & Qiao, J.-F. (2017). Design of Self-Organizing Intelligent Controller Using Fuzzy Neural Network. IEEE Transactions on Fuzzy systems, 26(5), pp. 3097-3111.
Kaitwanidvilai, S., & Parnichkun, M. (2005). Force control in a pneumatic system using hybrid adaptive neuro-fuzzy model reference control. Mechatronics, 15(1), pp. 23-41.
Khalil, H. K. (2002). Nonlinear systems. Upper Saddle River
Laghrouche¶, S., Smaoui, M., Plestan, F., & Brun, X. (2006). Higher order sliding mode control based on optimal approach of an electropneumatic actuator. International journal of Control, 79(2), pp. 119-131.
Lai, Y.-Y., & Chang, K.-M. (2017). Fuzzy control for a pneumatic positioning system. 2017 9th International Conference on Modelling, Identification and Control (ICMIC).
Lee, L.-W., & Li, I.-H. (2016). Design and implementation of a robust FNN-based adaptive sliding-mode controller for pneumatic actuator systems. Journal of Mechanical Science and Technology, 30(1), pp. 381-396.
Leng, G., Prasad, G., & McGinnity, T. M. (2004). An on-line algorithm for creating self-organizing fuzzy neural networks. Neural Networks, 17(10), pp. 1477-1493.
Lin, F.-J., & Wai, R.-J. (2001). Hybrid control using recurrent fuzzy neural network for linear induction motor servo drive. IEEE Transactions on Fuzzy systems, 9(1), pp. 102-115.
Liu, Y.-T., Kung, T.-T., Chang, K.-M., & Chen, S.-Y. (2013). Observer-based adaptive sliding mode control for pneumatic servo system. Precision Engineering, 37(3), pp. 522-530.
Maré, J.-C., Geider, O., & Colin, S. (2000). An improved dynamic model of pneumatic actuators. International Journal of Fluid Power, 1(2), pp. 39-49.
Nazari, V., & Surgenor, B. (2016). Improved position tracking performance of a pneumatic actuator using a fuzzy logic controller with velocity, system lag and friction compensation. International Journal of Control, Automation and Systems, 14(5), pp. 1376-1388.
Neji, Z., & Beji, F.-M. (2000). Neural Network and time series identification and prediction. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.
Ning, S., & Bone, G. M. (2005). Development of a nonlinear dynamic model for a servo pneumatic positioning system. IEEE International Conference Mechatronics and Automation, 2005.
Osman, K., Rahmat, M., Azman, M. A., & Suzumori, K. (2012). System identification model for an Intelligent Pneumatic Actuator (IPA) system. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Park, J.-H., Huh, S.-H., Kim, S.-H., Seo, S.-J., & Park, G.-T. (2005). Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks. IEEE Transactions on neural networks, 16(2), pp. 414-422.
Smaoui, M., Brun, X., & Thomasset, D. (2006). A study on tracking position control of an electropneumatic system using backstepping design. Control Engineering Practice, 14(8), pp. 923-933.
Sun, G., Wang, D., Peng, Z., Wang, H., Lan, W., & Wang, M. (2013). Robust adaptive neural control of uncertain pure-feedback nonlinear systems. International journal of Control, 86(5), pp. 912-922.
Tsai, Y.-C., & Huang, A.-C. (2008). Multiple-surface sliding controller design for pneumatic servo systems. Mechatronics, 18(9), pp. 506-512.
Zhu, Y., & Barth, E. J. (2010). Accurate sub-millimeter servo-pneumatic tracking using model reference adaptive control (MRAC). International Journal of Fluid Power, 11(2), pp. 43-55.