Dynamic Model of a Pneumatic Automatic People Mover (Aeromovel System)
DOI:
https://doi.org/10.1080/14399776.2014.931133Keywords:
dynamic models, pneumatics, Aeromovel transport system, Automated People MoverAbstract
This paper presents a new mathematical model for the Aeromovel transport system, which is a non-conventional Automated People Mover (APM) based on pneumatics. The vehicle runs over rails installed on an elevated guide, being propelled by air that is pressurised by means of an external power source (a blower) installed on the ground. The proposed lumped-parameter model is intended as an auxiliary tool for the development of this technology, especially in what concerns its trajectory control algorithms. The dynamics of the pressures in the chambers of the actuation pipe are modelled with basis on energy and continuity assumptions, and important phenomena, such as air compressibility, leakages, and steady-state head losses, are taken into account. The model is validated by the comparison between results of simulations and direct measurements performed in a real-scale prototype constructed in Porto Alegre, Brazil.
Downloads
References
Aeromovel. 2013. Retrieved from www.aeromovel.com.br
Boulter, B. T. 1999. Aeromovel Vehicle Speed Control System
Analysis. Rockwell Automation Reliance Electric Pub.
Greenville, Brazil.
Britto, J. F. F. H. 2008. Modelo Computacional do Sistema
Aeromóvel de Transportes. M.S. thesis, UFRGS, Porto
Alegre, Brazil.
Costa, E. C. 1981. Parecer técnico sobre o sistema de
transporte pneumático Coester Aeromóvel. Technical
Report (http://www.coester.com.br/). Porto Alegre, Brazil.
Ferreira, V. 1984. Análise simulada do sistema de propulsão -
Relatório Parcial. Fundatec. Porto Alegre, Brazil (http://
www.fundatec.org.br/).
Ferreira, V. and Sadhu, D. P. 1981. Aeromóvel: Avaliação do
Desempenho Técnico e Competitividade. Fundatec. Porto
Alegre, RS, Brazil (http://www.fundatec.org.br/).
Fox, R. W. and McDonald, A. T., 2006. Introduction to Fluid
Mechanics. John Wiley, Hoboken, NJ.
Freitag, J. and Detoni, J., 2000. Caderno de Especificação
Técnica – Frenagem do Aeromóvel. Eletrix Technical
Report. Porto Alegre, Brazil.
Henn, E. L. 2001. Fluid Machines. Ed. UFSM, Santa Maria,
Brazil.
Kalker, J. J. 1982. A Fast Algorithm for the Simplified Theory
of Rolling Contact, Vehicle System Dynamics: International
Journal of Vehicle Mechanics and Mobility, Vol. 11, No. 1,
pp. 1–13.
Kunz, G. O., Perondi, E. A. and Machado, J. M. 2011a. Modelling
and Simulating the Controller Behaviour of an Automated
People Mover using IEC 61850 Communication
Requirements. Proceedings of 9th INDIN, Lisbon, Portugal.
Kunz, G. O., Perondi, E. A. and Machado, J. M. 2011b. Modelling
and Simulation of IEC 61850 Requirements Applied
to an Automated People Movers Controller. Proceedings of
th ICINCO, Noordwijkerhout, The Netherlands.
Maré, J.-C., Geider, O. and Colin, S., 2000. An Improved
Dynamic Model of Pneumatic Actuators. International
Journal of Fluid Power, Vol. I, No. (2), pp. 39–47.
Perondi, E. A. and Guenther, R. 2000. Control of a Servopneumatic
Drive with Friction Compensation. Proceedings of
st FPNI PhD Symposium, Hamburg, Germany.
Polach, O., 2005. Creep Forces in Simulations of Traction
Vehicles Running on Adhesion Limit. Wear, Vol. 258, pp.
–1000.
Sarmanho, C. A., Perondi, E. A., Sobczyk, S. and M. R. 2011.
Gain-Schedule Control Based on Mass Estimation Applied
to the Braking System of an Urban Automated People
Mover. Proceedings of 21st COBEM, Natal, Brazil.
Sobczyk, S. M. R., Britto, J. F. F. H. and Perondi, E. A.
a. Cascade Nonlinear Control of Pneumatic Actuators
Applied to the Aeromovel Transport System. Proceedings
of 5th FPNI PhD Symposium, Cracow, Poland.
Sobczyk, S. M. R., Perondi, E. A. and Britto, J. F. F. H.
b. Nonlinear Cascade Control Applied to a Pneumatic
Urban Transport System. Proceedings of 8th CONTROLO,
Vila Real, Portugal.
Susin, M. P. B. 2008. Análise Numérica da Válvula
Atmosférica – Projeto Aeromóvel. B.Sc. Thesis. UFRGS,
Porto Alegre, Brazil (http://sabi.ufrgs.br).
Virvalo, T. and Koskinen, H., 1988. Electro-pneumatic Servo
System Design. Fluid Power International, Vol. 34,
pp. 141–147.