AN ANALYTIC THERMODYNAMIC MODEL FOR HYDRAULIC RESISTANCES BASED ON CFD FLOW PARAMETERS
Keywords:
lumped parameter, thermo-hydraulic simulation, hydraulic resistance, orifice, throttle, cavitation, CFDAbstract
This article illustrates the development of an analytic lumped parameter thermo-hydraulic model for a wide range of hydraulic resistance geometries based on mass flow. The relevant flow parameters such as the contraction coefficient in case of laminar flow separation are derived from CFD simulations. Furthermore, the consideration of cavitation effects can be included. State of the art in lumped parameter simulations of hydraulic circuits utilise volume-flow based equations like the orifice equation, which is extended for a wide variety of geometries and flow conditions including the transition from laminar to turbulent flow by adjusting the discharge coefficient based on empirical equations or lookup tables. The same situation persists for laminar flow description. In this case the Hagen-Poiseuille equation is often used in conjunction with correction factors based on the Reynolds number to regard the transition of laminar to turbulent flow. However, in practical applications the use of different equations for various flow conditions and geometries is cumbersome. Furthermore, in the widely used volume based flow description, the absolute pressure dependency of mass flow due to density changes and critical flow at which cavitation occurs is not accounted for until now. Without consideration of these influences a mass conservative modelling and thus high model precision is not possible. The overall goal of the proposed model is to increase accuracy of hydraulic system simulation tools and to support usability by simplifying parameterisation on basis of dimensions available from data sheets. The results of this study are obtained analytically as well as empirically by means of CFD simulations. Moreover, a large number of performed simulations support the understanding of fundamental effects in hydraulic resistance flow.
Downloads
References
Avva, R. K., Singhal, A. and Gibson, D. H. 1995. An
Enthalpy Based Model of Cavitation. ASME Journal
of Fluids Engineering, 226, pp. 63 - 70.
Baum, H. 2001. Einsatzpotentiale Neuronaler Netze bei
der CAE-Tool unterstützten Projektierung fluidtechnischer
Antriebe. Dissertation RWTH Aachen University,
Shaker Verlag, Aachen, ISBN 3-8265-9659-5.
Beater, P. 1999. Entwurf hydraulischer Maschinen.
VDI-Buch, Springer, Berlin
Bohn, D. 2008. Ähnlichkeitsprobleme des Maschinenbaus.
Vorlesungsumdruck, IDG RWTH Aachen
University.
Eich, O. 1979. Entwicklung geräuscharmer Ventile der
Ölhydraulik. Dissertation RWTH Aachen University,
Verlag Mainz.
Idelchik, I. E. 2007. Handbook of hydraulic resistances.
th revised and augmented edition, Begell
House, Inc., New York, ISBN: 978-1-56700-251-5.
Jungemann, M. 2005. 1D Modellierung und Simulation
des Durchflussverhaltens von Hydraulikkomponenten
bei sehr hohen Drücken unter Beachtung
der thermodynamischen Zustandsgrößen von Mineralöl.
Düsseldorf, p. 43.
Kajaste, J., Kauranne, H., Ellman, A. and Pietola,
M. 2006. Computational Models for Effective Bulk
Modulus of Hydraulic Fluid. The 2nd International
Conference on Computational Methods in Fluid
Power FPNI. Aalborg, Denmark, 7 p.
Kleppmann, W. 2008. Taschenbuch Versuchsplanung.
th edition, Hanser Verlag, Munich.
Latour, C. 1996. Strömungskraftkompensation in
hydraulischen Sitzventilen. Dissertation RWTH Aachen
University.
Li, M., Mulemane, A., Lai, M. C. and Poola, R.
Simulating Diesel Injectors Based on Different
Cavitation Modeling Approaches. ASME Paper
No. ICES2005-1030.
Lichtarowicz, A., Duggins, R. K. and Markland, E.
Discharge Coefficients for Incompressible
Non-Cavitating Flow Through Long Orifices.
Journal of Mechanical Engineering Science 1959-
Professional Engineering Publishing.
Luhmer, H. 1981. Aufbau hydraulischer Netzwerke
mit differenzierendem Verhalten und ihr Einsatz zur
Dämpfung hydrostatischer Antriebe. Dissertation,
RWTH Aachen University.
Maré, J. - C. and Attar, B. 2008. Enhanced model of
four way valves characteristics and its validation at
low temperature. International Journal of Fluid
Power. Vol.9, No. 3 pp. 35 - 4.
Merrit, H. E. 1967. Hydraulic Control Systems. John
Wiley & Sons, New York.
Murrenhoff, H. 2007. Grundlagen der Fluidtechnik –
Teil1: Hydraulik. Shaker Verlag, ISBN 3-8265-
-0.
N.N. 2004. Durchflussmessung von Fluiden mit Drosselgeräten
in voll durchströmten Leitungen mit
Kreisquerschnitt - Teil 2: Blenden. German edition
EN ISO 5167-2.
Nykänen, T., Esqué, S. and Ellman, A. 2000. Comparison
of different fluid models. Bath Workshop
on Power Transmission and Motion Control
PTMC. University of Bath, UK, pp. 151 - 165.
Riedel, C., Murrenhoff, H. and Stammen, C. 2010.
Physically Correct Hydraulic System Simulation
with Mass Conservative Approach. 7th International
Fluid Power Conference (IFK). Aachen, Germany,
Vol.1, pp. 523 - 534.
Riedel, C., Stammen, C. and Murrenhoff, H. 2009.
Fundamentals of Mass Conservative System Simulation
in Fluid Power. ASME Dynamic Systems and
Control Conference (DSCC). Hollywood, CA, 12-
September.
Riedel, H. - P. 1973. Untersuchungen von Kavitationserscheinungen
an hydraulischen Widerständen.
Dissertation RWTH Aachen University.
Roach, P. J. 1997. Quantification of Uncertainty in
Computational Fluid Dynamics. Annual Reviews of
Fluid Mechanics, Vol. 29, Palo Alto, CA, USA
Schmitt, T. 1966. Untersuchung zur stationären und
instationären Strömung durch Drosselquerschnitte in
Kraftstoffeinspritzsystemen von Dieselmotoren, Dissertation,
Technical University Munich, Forschungsberichte
Verbrennungskraftmaschinen Nr. 58.
Schröder, W. 2004. Fluidmechanik. Aachener Beiträge
zur Strömungsmechanik, 7th edition, Wissenschaftsverlag
Mainz, Aachen.
Singhal, A. K., Athavale, M. M., Li, H. and Jiang, Y.
Mathematical Basis and Validation of the
Full Cavitation Model. ASME J. Fluids Eng., 124,
pp. 617 - 624.
Truckenbrodt, E. 1996. Fluidmechanik. Band 1, 4.
Auflage, Springer, Berlin.
Watton, J. 2007. Modelling, Monitoring and Diagnostic
Techniques for Fluid Power Systems. Springer-
Verlag, London, 2007 ISBN 978-1-84628-373-4.
Will, D. 1986. Einfluß der Öltemperatur auf das
Durchflußverhalten von Drosselventilen. Dissertation
TU Dresden
Winklhofer, E., Kull, E., Kelz, E. and Morozov, A.
Comprehensive Hydraulic and Flow Field
Documentation in Model Throttle Experiments Under
Cavitation Conditions. Proceedings of ILASSEurope
Conference, Zürich.
Witt, K. 1974. Druckflüssigkeiten und thermodynamisches
Messen. Ingenieur Digest Verlag, Frankfurt
am Main.
Yang, H.Q., Singhal, A. K. and Megahed, M. 2005.
Industrial two-phase flow CFD – The full cavitation
model. von Kármán Institute for Fluid Dynamics,
Lecture Series, May 23 - 27.